Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Thứ ba, 21/5/2024 09:02 AM
Tác giả: Admin Hoclagioi
Bất đẳng thức Cosi là một trong những bất đẳng thức cổ điển được ứng dụng rất nhiều trong các bài Toán về bất đẳng thức và cực trị. Hãy cùng Học là Giỏi tổng hợp lại lí thuyết nhé.
Mục lục [Ẩn]
Bất đẳng thức Côsi là một trong những bất đẳng thức cổ điển. Tên chính xác là bất đẳng thức giữa trung bình cộng và trung bình nhân, nhiều người gọi là bất đẳng thức AM – GM (AM là viết tắt của Arithmetic mean và GM là viết tắt của Geometric mean). Bất đẳng thức Côsi ứng dụng rất nhiều trong các bài Toán về bất đẳng thức và cực trị.
Trung bình nhân của hai số không âm nhỏ hơn hoặc bằng trung bình cộng của chúng.
$\sqrt{a b} \leq \frac{a+b}{2} \forall a, b \geq 0$
Đẳng thức $\sqrt{a b}=\frac{a+b}{2}$ xảy ra khi và chỉ khi $\mathrm{a}=\mathrm{b}$.
Tổng của một số dương với nghịch đảo của nó lớn hơn hoặc bằng 2.
$a+\frac{1}{a} \geq 2, \forall a>0$
Nếu x, y cùng dương và có tổng không đổi thì tích (xy) lớn nhất khi và chỉ khi x = y.
Trong tất cả các hình chữ nhật có cùng chu vi, hình vuông có diện tích lớn nhất.
Nếu x, y cùng dương và có tích không đổi thì tổng (x + y) nhỏ nhất khi và chỉ khi x = y.
Trong tất cả các hình chữ nhật có cùng diện tích, hình vuông có chu vi nhỏ nhất.
Dạng 1: $\frac{x_1+x_2+\ldots+x_n}{n} \geq \sqrt[n]{x_1 \cdot x_2 \ldots x_n}$
Dạng 2: $\quad x_1+x_2+\ldots+x_n \geq n \cdot \sqrt[n]{x_1 \cdot x_2 \ldots x_n}$
Dạng 3: $\left(\frac{x_1+x_2+\ldots+x_n}{n}\right)^n \geq x_1 \cdot x_2 \ldots x_n$
Dấu đẳng thức xảy ra khi và chỉ khi $\mathrm{x}_1=\mathrm{x}_2=\ldots=\mathrm{x}_{\mathrm{n}}$
Dạng 1: $ \frac{1}{x_1}+\frac{1}{x_2}+\ldots+\frac{1}{x_n} \geq \frac{n^2}{x_1+x_2+\ldots x_n}$
Dạng 2: $\left(x_1+x_2+\ldots x_n\right)\left(\frac{1}{x_1}+\frac{1}{x_2}+\ldots+\frac{1}{x_n}\right) \geq n^2$
Dấu đẳng thức xảy ra khi và chỉ khi $\mathrm{x}_1=\mathrm{x}_2=\ldots=\mathrm{x}_{\mathrm{n}}$
- Khi áp dụng bất đẳng thức cô si thì các số phải là những số không âm
- Bất đẳng thức côsi thường được áp dụng khi trong BĐT cần chứng minh có tổng và tích
- Điều kiện xảy ra dấu ‘=’ là các số bằng nhau
- Bất đẳng thức côsi còn có hình thức khác thường hay sử dụng
- Đối với hai số:
$x^2+y^2 \geq 2 x y$.
$x^2+y^2 \geq \frac{(x+y)^2}{2}$
$x y \leq\left(\frac{x+y}{2}\right)^2$
- Đối với ba số: $a b c \leq \frac{a^3+b^3+c^3}{3}, a b c \leq\left(\frac{a+b+c}{3}\right)^3$
n | n = 2 | n = 3 |
Điều kiện | $x, y \geq 0$ | $x, y, z \geq 0$ |
Dạng 1 | $\frac{x+y}{2} \geq \sqrt{x y}$ | $\frac{x+y+z}{3} \geq \sqrt[3]{x y z}$ |
Dạng 2 | $\left(\frac{x+y}{2}\right)^2 \geq x y$ | $\left(\frac{x+y+z}{3}\right)^3 \geq x y z$ |
Dạng 3 | $\begin{gathered}\frac{1}{x}+\frac{1}{y} \geq \frac{4}{x+y} \\ (x, y>0)\end{gathered}$ | $\begin{gathered}\frac{1}{x}+\frac{1}{y}+\frac{1}{z} \geq \frac{9}{x+y+z} \\ (x, y, z>0)\end{gathered}$ |
Dạng 4 | $\begin{gathered}(x+y)\left(\frac{1}{x}+\frac{1}{y}\right) \geq 4 \\ (x, y>0)\end{gathered}$ | $\begin{gathered}(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) \geq 9 \\ (x, y, z>0)\end{gathered}$ |
Đẳng thức xảy ra | $x=y$ | $x=y=z$ |
Xem thêm:
Tổng hợp kiến thức về bất đẳng thức Minkowski
Tổng hợp kiến thức về bất đẳng thức Bunhiacopxki
Trung tâm gia sư Học là Giỏi mong rằng với việc hệ thống kiến thức trọng tâm ở trên sẽ giúp các em áp dụng để giải được phần bài tập về bất đẳng thức Cosi một cách dễ dàng hơn. Chúc các bạn thành công!
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Bí kíp chinh phục các hằng đẳng thức mở rộng
Thứ tư, 14/8/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Thể thơ song thất lục bát trong văn chương Việt Nam
Thứ ba, 28/5/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ ba, 26/11/2024 09:39 AM
Tứ giác nội tiếp là gì? Tính chất của tứ giác nội tiếp
Tứ giác nội tiếp là một trong những khái niệm quan trọng trong hình học lớp 9, đặc biệt khi tìm hiểu về các mối quan hệ giữa các điểm và đường tròn. Hãy cùng gia sư online Học là Giỏi khám phá tứ giác nội tiếp này là gì và chúng có các tính chất như thế nào nhé.
Thứ ba, 26/11/2024 04:35 AM
Khám phá lý thuyết về cung chứa góc toán 9
Khái niệm cung chứa góc ở trong toán lớp 9 đóng vai trò quan trọng khi tìm hiểu các tính chất và bài toán liên quan đến hình tròn. Cùng gia sư online Học là Giỏi đi sâu vào khái niệm và tính chất về cung chứa góc của đường tròn nhé.
Thứ hai, 25/11/2024 09:30 AM
Tìm hiểu góc có đỉnh ở bên trong đường tròn, bên ngoài đường tròn
Góc có đỉnh nằm bên trong đường tròn hoặc bên ngoài đường tròn mang đến những đặc điểm và tính chất riêng. Việc tìm hiểu về các loại góc này hỗ trợ rất nhiều trong việc giải quyết các bài toán hình học phức tạp. Hãy cùng gia sư online Học là Giỏi khám phá những khái niệm và định lý về góc có đỉnh nằm bên trong và bên ngoài đường tròn nhé.
Thứ sáu, 22/11/2024 09:18 AM
Chinh phục kiến thức về góc nội tiếp
Trong hình tròn, góc nội tiếp là một chủ đề cơ bản khi chúng có nhiều tính chất cần lưu ý trong hình học phẳng. Đây là khái niệm giúp chúng ta hiểu thêm các định lý liên quan đến đường tròn. Cùng gia sư online Học là Giỏi tìm hiểu về góc nội tiếp có gì đặc biệt và những nội dung quan trọng trong bài học này nhé.
Thứ ba, 19/11/2024 10:06 AM
Khám phá mối liên hệ giữa cung và dây
Mối liên hệ giữa cung và dây cung của đường tròn là chủ đề quan trọng trong chương trình hình học lớp 9. Dù chúng ta đã quá quen thuộc với hình ảnh những đường tròn, ít ai biết rằng cung và dây cung tạo sự liên kết mật thiết trong hình tròn. Hãy cùng gia sư online Học là Giỏi tìm hiểu rõ mối quan hệ này có gì đặc biệt nhé.
Thứ hai, 18/11/2024 10:07 AM
Tổng hợp kiến thức vị trí tương đối của hai đường tròn
Vị trí tương đối của hai đường tròn là kiến thức quan trọng để xét các tính chất của 2 đường tròn này có mối quan hệ gì với nhau. Hãy cùng gia sư online Học là Giỏi khám phá các trường hợp cơ bản về vị trí tương đối của hai đường tròn này nhé.