Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức

Tổng hợp lí thuyết về bất đẳng thức Cosi

schedule.svg

Thứ ba, 21/5/2024 09:02 AM

Tác giả: Admin Hoclagioi

Bất đẳng thức Cosi là một trong những bất đẳng thức cổ điển được ứng dụng rất nhiều trong các bài Toán về bất đẳng thức và cực trị. Hãy cùng Học là Giỏi tổng hợp lại lí thuyết nhé.

Mục lục [Ẩn]

Định lí và các hệ quả của công thức bất đẳng thức Cosi

Định lí và các hệ quả của công thức bất đẳng thức Cosi

Bất đẳng thức Côsi là một trong những bất đẳng thức cổ điển. Tên chính xác là bất đẳng thức giữa trung bình cộng và trung bình nhân, nhiều người gọi là bất đẳng thức AM – GM (AM là viết tắt của Arithmetic mean và GM là viết tắt của Geometric mean). Bất đẳng thức Côsi ứng dụng rất nhiều trong các bài Toán về bất đẳng thức và cực trị.

Định lí

Trung bình nhân của hai số không âm nhỏ hơn hoặc bằng trung bình cộng của chúng.

$\sqrt{a b} \leq \frac{a+b}{2} \forall a, b \geq 0$

Đẳng thức $\sqrt{a b}=\frac{a+b}{2}$ xảy ra khi và chỉ khi $\mathrm{a}=\mathrm{b}$.

Các hệ quả của bất đẳng thức Cosi

Tổng của một số dương với nghịch đảo của nó lớn hơn hoặc bằng 2.

$a+\frac{1}{a} \geq 2, \forall a>0$

Nếu x, y cùng dương và có tổng không đổi thì tích (xy) lớn nhất khi và chỉ khi x = y.

Trong tất cả các hình chữ nhật có cùng chu vi, hình vuông có diện tích lớn nhất.

Nếu x, y cùng dương và có tích không đổi thì tổng (x + y) nhỏ nhất khi và chỉ khi x = y.

Trong tất cả các hình chữ nhật có cùng diện tích, hình vuông có chu vi nhỏ nhất.

Dạng tổng quát của bất đẳng thức Cosi

Cho $x_1, x_2, x_3, \ldots, x_n$ là các số thực không âm ta có:

Dạng 1: $\frac{x_1+x_2+\ldots+x_n}{n} \geq \sqrt[n]{x_1 \cdot x_2 \ldots x_n}$

Dạng 2: $\quad x_1+x_2+\ldots+x_n \geq n \cdot \sqrt[n]{x_1 \cdot x_2 \ldots x_n}$

Dạng 3: $\left(\frac{x_1+x_2+\ldots+x_n}{n}\right)^n \geq x_1 \cdot x_2 \ldots x_n$

Dấu đẳng thức xảy ra khi và chỉ khi $\mathrm{x}_1=\mathrm{x}_2=\ldots=\mathrm{x}_{\mathrm{n}}$

Cho $x_1, x_2, x_3, \ldots, x_n$ là các số thực dương ta có:

Dạng 1: $ \frac{1}{x_1}+\frac{1}{x_2}+\ldots+\frac{1}{x_n} \geq \frac{n^2}{x_1+x_2+\ldots x_n}$

Dạng 2: $\left(x_1+x_2+\ldots x_n\right)\left(\frac{1}{x_1}+\frac{1}{x_2}+\ldots+\frac{1}{x_n}\right) \geq n^2$

Dấu đẳng thức xảy ra khi và chỉ khi $\mathrm{x}_1=\mathrm{x}_2=\ldots=\mathrm{x}_{\mathrm{n}}$

Chú ý:

- Khi áp dụng bất đẳng thức cô si thì các số phải là những số không âm

- Bất đẳng thức côsi thường được áp dụng khi trong BĐT cần chứng minh có tổng và tích

- Điều kiện xảy ra dấu ‘=’ là các số bằng nhau

- Bất đẳng thức côsi còn có hình thức khác thường hay sử dụng

- Đối với hai số:

$x^2+y^2 \geq 2 x y$.

$x^2+y^2 \geq \frac{(x+y)^2}{2}$

$x y \leq\left(\frac{x+y}{2}\right)^2$

- Đối với ba số: $a b c \leq \frac{a^3+b^3+c^3}{3}, a b c \leq\left(\frac{a+b+c}{3}\right)^3$

Các bất đẳng thức Cosi đặc biệt

n

n = 2

n = 3

Điều kiện

$x, y \geq 0$

$x, y, z \geq 0$

Dạng 1

$\frac{x+y}{2} \geq \sqrt{x y}$

$\frac{x+y+z}{3} \geq \sqrt[3]{x y z}$

Dạng 2

$\left(\frac{x+y}{2}\right)^2 \geq x y$

$\left(\frac{x+y+z}{3}\right)^3 \geq x y z$

Dạng 3

$\begin{gathered}\frac{1}{x}+\frac{1}{y} \geq \frac{4}{x+y} \\ (x, y>0)\end{gathered}$

$\begin{gathered}\frac{1}{x}+\frac{1}{y}+\frac{1}{z} \geq \frac{9}{x+y+z} \\ (x, y, z>0)\end{gathered}$

Dạng 4

$\begin{gathered}(x+y)\left(\frac{1}{x}+\frac{1}{y}\right) \geq 4 \\ (x, y>0)\end{gathered}$

$\begin{gathered}(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) \geq 9 \\ (x, y, z>0)\end{gathered}$

Đẳng thức xảy ra

$x=y$

$x=y=z$



 

Xem thêm:
Tổng hợp kiến thức về bất đẳng thức Minkowski
Tổng hợp kiến thức về bất đẳng thức Bunhiacopxki

Kết luận

Trung tâm gia sư Học là Giỏi mong rằng với việc hệ thống kiến thức trọng tâm ở trên sẽ giúp các em áp dụng để giải được phần bài tập về bất đẳng thức Cosi một cách dễ dàng hơn. Chúc các bạn thành công!

Chủ đề:

Đăng ký học thử ngay hôm nay

Để con học sớm - Ôn sâu và nhận ưu đãi học phí!

Bài viết liên quan

Tử số và mẫu số là gì? Kiến thức nền tảng về phân số
schedule

Thứ tư, 2/7/2025 03:40 AM

Tử số và mẫu số là gì? Kiến thức nền tảng về phân số

Khi học về phân số, chắc hẳn bạn đã từng thắc mắc: Tử số và mẫu số là gì? Đây là khái niệm xuất hiện thường xuyên trong chương trình Toán tiểu học. Học là Giỏi sẽ cung cấp chi tiết kiến thức trong bài viết sau giúp bạn hiểu rõ tử số và mẫu số trong toán học nhé.

Các phương pháp quy đồng mẫu số các phân số
schedule

Thứ ba, 1/7/2025 08:07 AM

Các phương pháp quy đồng mẫu số các phân số

Trong chương trình toán tiểu học, phân số luôn là phần kiến thức khiến nhiều học sinh cảm thấy khó tiếp cận. Đặc biệt, việc quy đồng mẫu số thường gây nhầm lẫn nếu không được hướng dẫn cụ thể. Học là Giỏi sẽ giúp bạn giải đáp tất cả những thắc mắc về quy đồng mẫu số các phân số một cách dễ hiểu và chi tiết.

Đáp án, đề thi môn Toán vào 10 tỉnh Lâm Đồng 2025
schedule

Thứ ba, 17/6/2025 04:12 AM

Đáp án, đề thi môn Toán vào 10 tỉnh Lâm Đồng 2025

Học là Giỏi tổng hợp trọn bộ đáp án, đề thi môn Toán vào 10 tỉnh Lâm Đồng 2025 nhằm hỗ trợ học sinh thuận tiện trong việc so sánh kết quả và tự đánh giá năng lực làm bài.

Đáp án, đề thi môn Toán THPT Quốc gia 2025
schedule

Thứ sáu, 13/6/2025 07:11 AM

Đáp án, đề thi môn Toán THPT Quốc gia 2025

Bài viết cập nhật nhanh chóng và chính xác đề thi cùng đáp án giúp thí sinh so sánh kết quả và định hướng các nguyện vọng phù hợp. Học là Giỏi cung cấp đề thi chính thức môn Toán THPT Quốc gia 2025 được thi vào chiều ngày 26/06/2025 kèm đáp án chi tiết từng mã đề, hỗ trợ thí sinh tra cứu dễ dàng và tiện lợi.

Đáp án, đề thi môn Toán vào 10 tỉnh Đắk Nông 2025
schedule

Thứ sáu, 6/6/2025 09:55 AM

Đáp án, đề thi môn Toán vào 10 tỉnh Đắk Nông 2025

Học là Giỏi sẽ cung cấp đáp án, đề thi môn Toán vào 10 tỉnh Đắk Nông 2025 giúp các em dễ dàng đối chiếu bài làm, từ đó ước lượng điểm số một cách chính xác.

Đáp án, đề thi môn Toán vào 10 tỉnh Trà Vinh 2025
schedule

Thứ sáu, 6/6/2025 09:20 AM

Đáp án, đề thi môn Toán vào 10 tỉnh Trà Vinh 2025

Học là Giỏi cung cấp đầy đủ đáp án, đề thi môn Toán vào 10 tỉnh Trà Vinh 2025 nhằm hỗ trợ học sinh tra cứu, đánh giá điểm bài làm của bản thân.

message.svg zalo.png