Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức

Tổng hợp lí thuyết về bất đẳng thức Cosi

schedule.svg

Thứ ba, 21/5/2024 09:02 AM

Tác giả: Admin Hoclagioi

Bất đẳng thức Cosi là một trong những bất đẳng thức cổ điển được ứng dụng rất nhiều trong các bài Toán về bất đẳng thức và cực trị. Hãy cùng Học là Giỏi tổng hợp lại lí thuyết nhé.

Mục lục [Ẩn]

Định lí và các hệ quả của công thức bất đẳng thức Cosi

Định lí và các hệ quả của công thức bất đẳng thức Cosi

Bất đẳng thức Côsi là một trong những bất đẳng thức cổ điển. Tên chính xác là bất đẳng thức giữa trung bình cộng và trung bình nhân, nhiều người gọi là bất đẳng thức AM – GM (AM là viết tắt của Arithmetic mean và GM là viết tắt của Geometric mean). Bất đẳng thức Côsi ứng dụng rất nhiều trong các bài Toán về bất đẳng thức và cực trị.

Định lí

Trung bình nhân của hai số không âm nhỏ hơn hoặc bằng trung bình cộng của chúng.

$\sqrt{a b} \leq \frac{a+b}{2} \forall a, b \geq 0$

Đẳng thức $\sqrt{a b}=\frac{a+b}{2}$ xảy ra khi và chỉ khi $\mathrm{a}=\mathrm{b}$.

Các hệ quả của bất đẳng thức Cosi

Tổng của một số dương với nghịch đảo của nó lớn hơn hoặc bằng 2.

$a+\frac{1}{a} \geq 2, \forall a>0$

Nếu x, y cùng dương và có tổng không đổi thì tích (xy) lớn nhất khi và chỉ khi x = y.

Trong tất cả các hình chữ nhật có cùng chu vi, hình vuông có diện tích lớn nhất.

Nếu x, y cùng dương và có tích không đổi thì tổng (x + y) nhỏ nhất khi và chỉ khi x = y.

Trong tất cả các hình chữ nhật có cùng diện tích, hình vuông có chu vi nhỏ nhất.

Dạng tổng quát của bất đẳng thức Cosi

Cho $x_1, x_2, x_3, \ldots, x_n$ là các số thực không âm ta có:

Dạng 1: $\frac{x_1+x_2+\ldots+x_n}{n} \geq \sqrt[n]{x_1 \cdot x_2 \ldots x_n}$

Dạng 2: $\quad x_1+x_2+\ldots+x_n \geq n \cdot \sqrt[n]{x_1 \cdot x_2 \ldots x_n}$

Dạng 3: $\left(\frac{x_1+x_2+\ldots+x_n}{n}\right)^n \geq x_1 \cdot x_2 \ldots x_n$

Dấu đẳng thức xảy ra khi và chỉ khi $\mathrm{x}_1=\mathrm{x}_2=\ldots=\mathrm{x}_{\mathrm{n}}$

Cho $x_1, x_2, x_3, \ldots, x_n$ là các số thực dương ta có:

Dạng 1: $ \frac{1}{x_1}+\frac{1}{x_2}+\ldots+\frac{1}{x_n} \geq \frac{n^2}{x_1+x_2+\ldots x_n}$

Dạng 2: $\left(x_1+x_2+\ldots x_n\right)\left(\frac{1}{x_1}+\frac{1}{x_2}+\ldots+\frac{1}{x_n}\right) \geq n^2$

Dấu đẳng thức xảy ra khi và chỉ khi $\mathrm{x}_1=\mathrm{x}_2=\ldots=\mathrm{x}_{\mathrm{n}}$

Chú ý:

- Khi áp dụng bất đẳng thức cô si thì các số phải là những số không âm

- Bất đẳng thức côsi thường được áp dụng khi trong BĐT cần chứng minh có tổng và tích

- Điều kiện xảy ra dấu ‘=’ là các số bằng nhau

- Bất đẳng thức côsi còn có hình thức khác thường hay sử dụng

- Đối với hai số:

$x^2+y^2 \geq 2 x y$.

$x^2+y^2 \geq \frac{(x+y)^2}{2}$

$x y \leq\left(\frac{x+y}{2}\right)^2$

- Đối với ba số: $a b c \leq \frac{a^3+b^3+c^3}{3}, a b c \leq\left(\frac{a+b+c}{3}\right)^3$

Các bất đẳng thức Cosi đặc biệt

n

n = 2

n = 3

Điều kiện

$x, y \geq 0$

$x, y, z \geq 0$

Dạng 1

$\frac{x+y}{2} \geq \sqrt{x y}$

$\frac{x+y+z}{3} \geq \sqrt[3]{x y z}$

Dạng 2

$\left(\frac{x+y}{2}\right)^2 \geq x y$

$\left(\frac{x+y+z}{3}\right)^3 \geq x y z$

Dạng 3

$\begin{gathered}\frac{1}{x}+\frac{1}{y} \geq \frac{4}{x+y} \\ (x, y>0)\end{gathered}$

$\begin{gathered}\frac{1}{x}+\frac{1}{y}+\frac{1}{z} \geq \frac{9}{x+y+z} \\ (x, y, z>0)\end{gathered}$

Dạng 4

$\begin{gathered}(x+y)\left(\frac{1}{x}+\frac{1}{y}\right) \geq 4 \\ (x, y>0)\end{gathered}$

$\begin{gathered}(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) \geq 9 \\ (x, y, z>0)\end{gathered}$

Đẳng thức xảy ra

$x=y$

$x=y=z$



 

Xem thêm:
Tổng hợp kiến thức về bất đẳng thức Minkowski
Tổng hợp kiến thức về bất đẳng thức Bunhiacopxki

Kết luận

Trung tâm gia sư Học là Giỏi mong rằng với việc hệ thống kiến thức trọng tâm ở trên sẽ giúp các em áp dụng để giải được phần bài tập về bất đẳng thức Cosi một cách dễ dàng hơn. Chúc các bạn thành công!

Chủ đề:

Đăng ký học thử ngay hôm nay

Để con học sớm - Ôn sâu và nhận ưu đãi học phí!

Bài viết liên quan

Tia là gì? Khái niệm cơ bản và tính chất trong hình học
schedule

Thứ năm, 28/8/2025 04:23 AM

Tia là gì? Khái niệm cơ bản và tính chất trong hình học

Trong hình học, một trong những khái niệm mà học sinh cần nắm vững chính là tia. Nhiều bạn thường đặt câu hỏi: tia là gì và cách phân biệt nó với đoạn thẳng hay đường thẳng như thế nào? Học là Giỏi sẽ giúp bạn tìm hiểu chi tiết về tia là gì, các tính chất quan trọng và những bài tập minh họa dễ hiểu qua bài viết dưới đây nhé.

Đoạn thẳng là gì? Cách tính độ dài đoạn thẳng
schedule

Thứ tư, 27/8/2025 02:03 PM

Đoạn thẳng là gì? Cách tính độ dài đoạn thẳng

Trong chương trình toán học cơ bản, từ những bài toán hình học đầu tiên, học sinh đã được làm quen với đoạn thẳng để nghiên cứu đường thẳng, góc, tam giác hay các hình đa giác phức tạp hơn. Học là Giỏi sẽ giúp bạn hiểu rõ khái niệm, tính chất và các dạng bài tập cũng như nắm bắt được cách tính độ dài đoạn thẳng nhé.

Đường thẳng và những kiến thức nền tảng cần ghi nhớ
schedule

Thứ tư, 27/8/2025 08:20 AM

Đường thẳng và những kiến thức nền tảng cần ghi nhớ

Trong hình học, đường thẳng là một trong những khái niệm cơ bản và xuất hiện nhiều trong các đề thi và bài kiểm tra. Học là Giỏi sẽ giúp bạn hiểu rõ hơn về đặc điểm, ứng dụng và cách giải bài tập liên quan đến đường thẳng thông qua bài viết này nhé.

Hướng dẫn học bảng nhân 6 hiệu quả tại nhà
schedule

Thứ tư, 27/8/2025 03:12 AM

Hướng dẫn học bảng nhân 6 hiệu quả tại nhà

Bảng nhân 6 là một phần không thể thiếu trong bảng cửu chương, thường xuất hiện trong nhiều dạng bài tập và tình huống thực tế. Học là Giỏi sẽ giúp bạn hiểu rõ quy luật, ghi nhớ dễ dàng và thực hành hiệu quả bảng nhân 6.

Tổng hợp công thức tính phương sai và độ lệch chuẩn dễ nhớ
schedule

Thứ ba, 26/8/2025 09:12 AM

Tổng hợp công thức tính phương sai và độ lệch chuẩn dễ nhớ

Trong thống kê và xác suất, cách dữ liệu phân tán quanh giá trị trung bình có ý nghĩa trong học tập cũng như thực tiễn. Hai công thức này thường được sử dụng để đo lường mức độ biến động đó chính là phương sai và độ lệch chuẩn. Học là Giỏi sẽ giúp bạn nắm vững kiến thức cơ bản về phương sai và độ lệch chuẩn, kèm theo bài tập minh họa dễ hiểu.

Tập hợp con là gì? Các trường hợp đặc biệt của tập hợp con
schedule

Thứ hai, 25/8/2025 09:45 AM

Tập hợp con là gì? Các trường hợp đặc biệt của tập hợp con

Khái niệm tập hợp hỗ trợ học sinh làm quen với cách mô tả và phân loại đối tượng trong môn toán cấp 3. Trong đó, tập hợp con là gì luôn là câu hỏi thường gặp bởi đây là kiến thức cơ bản nhưng lại có ứng dụng trong nhiều dạng bài tập. Học là Giỏi sẽ giúp bạn nắm vững khái niệm, tính chất và cách vận dụng tập hợp con một cách rõ ràng, dễ hiểu.

message.svg zalo.png