Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức

Tổng hợp đầy đủ về công thức lượng giác

schedule.svg

Thứ tư, 29/5/2024 06:34 AM

Tác giả: Admin Hoclagioi

Bài viết này của Học là Giỏi sẽ chia sẻ chi tiết các kiến thức về các công thức lượng giác từ cơ bản đến nâng cao trong toán học. Việc này sẽ giúp bạn dễ dàng tổng hợp, cũng như ghi nhớ tốt hơn các kiến thức đã học trên trường lớp.

Mục lục [Ẩn]

Các hàm lượng giác của một góc thường được định nghĩa bởi tỷ lệ chiều dài hai cạnh của tam giác vuông chứa góc đó, hoặc tỷ lệ chiều dài giữa các đoạn thẳng nối các điểm đặc biệt trên vòng tròn đơn vị.

Công thức hàm số lượng giác cơ bản

$\begin{aligned} & \tan x=\frac{\sin x}{\cos x} \\ & \cot x=\frac{\cos x}{\sin x} \\ & \sin ^2 x+\cos ^2 x=1 \\ & \tan x \cdot \cot x=1\left(x \neq k \frac{\pi}{2}, k \in Z\right) \\ & 1+\tan ^2 x=\frac{1}{\cos ^2 x}\left(x \neq \frac{\pi}{2}+k \pi, k \in Z\right) \\ & 1+\cot ^2 x=\frac{1}{\sin ^2 x}(x \neq k \pi, k \in Z)\end{aligned}$

Công thức cộng trong hàm số lượng giác

$\begin{aligned} & \sin (a \pm b)=\sin a \cdot \cos b \pm \cos a \cdot \sin b \\ & \cos (a \pm b)=\cos a \cdot \cos b \mp \sin a \cdot \sin b \\ & \tan (a \pm b)=\frac{\tan a \pm \tan b}{1 \mp \tan a \cdot \tan b}\end{aligned}$

Mẹo dùng để nhớ nhanh các công thức lượng giác cộng trong hàm số là câu nói “Sin thì sin cos cos sin, cos thì cos cos sin sin dấu trừ. Tan thì tan nọ tan kia chia cho mẫu số 1 trừ tan tan.”

Công thức các cung liên quan trên đường tròn lượng giác

Hai góc đối nhau:

cos (-x) = cos x

sin (-x) = -sin x

tan (-x) = -tan x

cot (-x) = -cot x

Hai góc bù nhau:

sin (π - x) = sin x

cos (π - x) = -cos x

tan (π - x) = -tan x

cot (π - x) = -cot x

Hai góc phụ nhau:

sin (π/2 - x) = cos x

cos (π/2 - x) = sin x

tan (π/2 - x) = cot x

cot (π/2 - x) = tan x

Hai góc hơn kém π:

sin (π + x) = -sin x

cos (π + x) = -cos x

tan (π + x) = tan x

cot (π + x) = cot x

Hai góc hơn kém π/2:

sin (π/2 + x) = cos x

cos (π/2 + x) = -sin x

tan (π/2 + x) = -cot x

cot (π/2 + x) = -tan x

Mẹo nhớ nhanh công thức như sau: “Cos đối, sin bù, phụ chéo, tan hơn kém π.”

Công thức nhân

Công thức nhân đôi:

- $\sin 2 a=2 \sin a \cdot \cos a$

- $\cos 2 a=\cos ^2 a-\sin ^2 a=2 \cos ^2 a-1=1-2 \sin ^2 a$

- $\tan 2 a=\frac{2 \tan a}{1-\tan ^2 a}$

- $\cot 2 a=\frac{\cot ^2 a-1}{2 \cot a}$

Công thức nhân ba:

- $\sin 3 a=3 \sin a-4 \sin ^3 a$

- $\cos 3 a=4 \cos ^3 a-3 \cos a$

- $\tan 3 a=\frac{3 \tan a-\tan ^3 a}{1-3 \tan ^2 a}$

- $\cot 3 a=\frac{\cot ^3 a-3 \cot a}{3 \cot ^2 a-1}$

Công thức nhân bốn:

- $\sin 4 a=4 \cdot \sin a \cdot \cos ^3 a-4 \cdot \cos a \cdot \sin ^3 a$

- $\cos 4 a=8 \cdot \cos ^4 a-8 \cdot \cos ^2 a+1$

- hoặc $\cos 4 a=8 \cdot \sin ^4 a-8 \cdot \sin ^2 a+1$

Công thức hạ bậc trong hàm số lượng giác

$\begin{aligned} \sin ^2 a & =\frac{1-\cos 2 a}{2} \\ \cos ^2 a & =\frac{1+\cos 2 a}{2} \\ \sin ^3 a & =\frac{3 \sin a-\sin 3 a}{4} \\ \cos ^3 a & =\frac{3 \cos a+\cos 3 a}{4}\end{aligned}$

Công thức biến tổng thành tích

$\begin{aligned} & \cos a+\cos b=2 \cos \frac{a+b}{2} \cos \frac{a-b}{2} \\ & \cos a-\cos b=-2 \sin \frac{a+b}{2} \sin \frac{a-b}{2} \\ & \sin a+\sin b=2 \sin \frac{a+b}{2} \cos \frac{a-b}{2} \\ & \sin a-\sin b=2 \cos \frac{a+b}{2} \sin \frac{a-b}{2}\end{aligned}$

Mẹo giúp dễ dàng ghi nhớ công thức hơn: “Cos cộng cos bằng 2 cos cos, cos trừ cos bằng trừ 2 sin sin; sin cộng sin bằng 2 sin cos, sin trừ sin bằng 2 cos sin.”

Công thức biến tích thành tổng

$$\begin{aligned}& \cos a \cdot \cos b=\frac{1}{2}[\cos (a+b)+\cos (a-b)] \\& \sin a \cdot \sin b=-\frac{1}{2}[\cos (a+b)-\cos (a-b)] \\& \sin a \cdot \cos b=\frac{1}{2}[\sin (a+b)+\sin (a-b)]\end{aligned}$$

Kiến thức cơ bản

  sinu=sinv{u=v+k2πu=πv+k2π,  kZ  cosu=cosv{u=v+k2πu=v+k2π,  kZ  tanu=tanvu=v+kπ,  kZ  cotu=cotvu=v+kπ,  kZ\begin{aligned} & \sin u = \sin v \Leftrightarrow \begin{cases} u = v + k 2\pi \\ u = \pi - v + k 2\pi \end{cases}, \; k \in \mathbb{Z} \\ & \cos u = \cos v \Leftrightarrow \begin{cases} u = v + k 2\pi \\ u = -v + k 2\pi \end{cases}, \; k \in \mathbb{Z} \\ & \tan u = \tan v \Leftrightarrow u = v + k \pi, \; k \in \mathbb{Z} \\ & \cot u = \cot v \Leftrightarrow u = v + k \pi, \; k \in \mathbb{Z} \end{aligned}

Trên đây là tất cả các thông tin về công thức lượng giác mà bạn cần ghi nhớ. Hy vọng, với những chia sẻ thực tế trên đây của Học là Giỏi , sẽ giúp bạn dễ dàng chinh phục các đề thi sắp tới. 

Xem thêm:

Bảy hằng đẳng thức đáng nhớ trong Toán lớp 8

Cách giải phương trình bậc hai một ẩn và ứng dụng của nó

Chủ đề:
Bài viết xem nhiều

Đăng ký học thử ngay hôm nay

Để con học sớm - Ôn sâu và nhận ưu đãi học phí!

Bài viết liên quan

Tứ giác nội tiếp là gì? Tính chất của tứ giác nội tiếp
schedule

Thứ ba, 26/11/2024 09:39 AM

Tứ giác nội tiếp là gì? Tính chất của tứ giác nội tiếp

Tứ giác nội tiếp là một trong những khái niệm quan trọng trong hình học lớp 9, đặc biệt khi tìm hiểu về các mối quan hệ giữa các điểm và đường tròn. Hãy cùng gia sư online Học là Giỏi khám phá tứ giác nội tiếp này là gì và chúng có các tính chất như thế nào nhé.

Khám phá lý thuyết về cung chứa góc toán 9
schedule

Thứ ba, 26/11/2024 04:35 AM

Khám phá lý thuyết về cung chứa góc toán 9

Khái niệm cung chứa góc ở trong toán lớp 9 đóng vai trò quan trọng khi tìm hiểu các tính chất và bài toán liên quan đến hình tròn. Cùng gia sư online Học là Giỏi đi sâu vào khái niệm và tính chất về cung chứa góc của đường tròn nhé.

Tìm hiểu góc có đỉnh ở bên trong đường tròn, bên ngoài đường tròn
schedule

Thứ hai, 25/11/2024 09:30 AM

Tìm hiểu góc có đỉnh ở bên trong đường tròn, bên ngoài đường tròn

Góc có đỉnh nằm bên trong đường tròn hoặc bên ngoài đường tròn mang đến những đặc điểm và tính chất riêng. Việc tìm hiểu về các loại góc này hỗ trợ rất nhiều trong việc giải quyết các bài toán hình học phức tạp. Hãy cùng gia sư online Học là Giỏi khám phá những khái niệm và định lý về góc có đỉnh nằm bên trong và bên ngoài đường tròn nhé.

Chinh phục kiến thức về góc nội tiếp
schedule

Thứ sáu, 22/11/2024 09:18 AM

Chinh phục kiến thức về góc nội tiếp

Trong hình tròn, góc nội tiếp là một chủ đề cơ bản khi chúng có nhiều tính chất cần lưu ý trong hình học phẳng. Đây là khái niệm giúp chúng ta hiểu thêm các định lý liên quan đến đường tròn. Cùng gia sư online Học là Giỏi tìm hiểu về góc nội tiếp có gì đặc biệt và những nội dung quan trọng trong bài học này nhé.

Khám phá mối liên hệ giữa cung và dây
schedule

Thứ ba, 19/11/2024 10:06 AM

Khám phá mối liên hệ giữa cung và dây

Mối liên hệ giữa cung và dây cung của đường tròn là chủ đề quan trọng trong chương trình hình học lớp 9. Dù chúng ta đã quá quen thuộc với hình ảnh những đường tròn, ít ai biết rằng cung và dây cung tạo sự liên kết mật thiết trong hình tròn. Hãy cùng gia sư online Học là Giỏi tìm hiểu rõ mối quan hệ này có gì đặc biệt nhé.

Tổng hợp kiến thức vị trí tương đối của hai đường tròn
schedule

Thứ hai, 18/11/2024 10:07 AM

Tổng hợp kiến thức vị trí tương đối của hai đường tròn

Vị trí tương đối của hai đường tròn là kiến thức quan trọng để xét các tính chất của 2 đường tròn này có mối quan hệ gì với nhau. Hãy cùng gia sư online Học là Giỏi khám phá các trường hợp cơ bản về vị trí tương đối của hai đường tròn này nhé.

message.svg zalo.png