Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức

Tổng hợp đầy đủ về công thức lượng giác

schedule.svg

Thứ tư, 29/5/2024 06:34 AM

Tác giả: Admin Hoclagioi

Bài viết này của Học là Giỏi sẽ chia sẻ chi tiết các kiến thức về các công thức lượng giác từ cơ bản đến nâng cao trong toán học. Việc này sẽ giúp bạn dễ dàng tổng hợp, cũng như ghi nhớ tốt hơn các kiến thức đã học trên trường lớp.

Mục lục [Ẩn]

Các hàm lượng giác của một góc thường được định nghĩa bởi tỷ lệ chiều dài hai cạnh của tam giác vuông chứa góc đó, hoặc tỷ lệ chiều dài giữa các đoạn thẳng nối các điểm đặc biệt trên vòng tròn đơn vị.

Công thức hàm số lượng giác cơ bản

$\begin{aligned} & \tan x=\frac{\sin x}{\cos x} \\ & \cot x=\frac{\cos x}{\sin x} \\ & \sin ^2 x+\cos ^2 x=1 \\ & \tan x \cdot \cot x=1\left(x \neq k \frac{\pi}{2}, k \in Z\right) \\ & 1+\tan ^2 x=\frac{1}{\cos ^2 x}\left(x \neq \frac{\pi}{2}+k \pi, k \in Z\right) \\ & 1+\cot ^2 x=\frac{1}{\sin ^2 x}(x \neq k \pi, k \in Z)\end{aligned}$

Công thức cộng trong hàm số lượng giác

$\begin{aligned} & \sin (a \pm b)=\sin a \cdot \cos b \pm \cos a \cdot \sin b \\ & \cos (a \pm b)=\cos a \cdot \cos b \mp \sin a \cdot \sin b \\ & \tan (a \pm b)=\frac{\tan a \pm \tan b}{1 \mp \tan a \cdot \tan b}\end{aligned}$

Mẹo dùng để nhớ nhanh các công thức lượng giác cộng trong hàm số là câu nói “Sin thì sin cos cos sin, cos thì cos cos sin sin dấu trừ. Tan thì tan nọ tan kia chia cho mẫu số 1 trừ tan tan.”

Công thức các cung liên quan trên đường tròn lượng giác

Hai góc đối nhau:

cos (-x) = cos x

sin (-x) = -sin x

tan (-x) = -tan x

cot (-x) = -cot x

Hai góc bù nhau:

sin (π - x) = sin x

cos (π - x) = -cos x

tan (π - x) = -tan x

cot (π - x) = -cot x

Hai góc phụ nhau:

sin (π/2 - x) = cos x

cos (π/2 - x) = sin x

tan (π/2 - x) = cot x

cot (π/2 - x) = tan x

Hai góc hơn kém π:

sin (π + x) = -sin x

cos (π + x) = -cos x

tan (π + x) = tan x

cot (π + x) = cot x

Hai góc hơn kém π/2:

sin (π/2 + x) = cos x

cos (π/2 + x) = -sin x

tan (π/2 + x) = -cot x

cot (π/2 + x) = -tan x

Mẹo nhớ nhanh công thức như sau: “Cos đối, sin bù, phụ chéo, tan hơn kém π.”

Công thức nhân

Công thức nhân đôi:

- $\sin 2 a=2 \sin a \cdot \cos a$

- $\cos 2 a=\cos ^2 a-\sin ^2 a=2 \cos ^2 a-1=1-2 \sin ^2 a$

- $\tan 2 a=\frac{2 \tan a}{1-\tan ^2 a}$

- $\cot 2 a=\frac{\cot ^2 a-1}{2 \cot a}$

Công thức nhân ba:

- $\sin 3 a=3 \sin a-4 \sin ^3 a$

- $\cos 3 a=4 \cos ^3 a-3 \cos a$

- $\tan 3 a=\frac{3 \tan a-\tan ^3 a}{1-3 \tan ^2 a}$

- $\cot 3 a=\frac{\cot ^3 a-3 \cot a}{3 \cot ^2 a-1}$

Công thức nhân bốn:

- $\sin 4 a=4 \cdot \sin a \cdot \cos ^3 a-4 \cdot \cos a \cdot \sin ^3 a$

- $\cos 4 a=8 \cdot \cos ^4 a-8 \cdot \cos ^2 a+1$

- hoặc $\cos 4 a=8 \cdot \sin ^4 a-8 \cdot \sin ^2 a+1$

Công thức hạ bậc trong hàm số lượng giác

$\begin{aligned} \sin ^2 a & =\frac{1-\cos 2 a}{2} \\ \cos ^2 a & =\frac{1+\cos 2 a}{2} \\ \sin ^3 a & =\frac{3 \sin a-\sin 3 a}{4} \\ \cos ^3 a & =\frac{3 \cos a+\cos 3 a}{4}\end{aligned}$

Công thức biến tổng thành tích

$\begin{aligned} & \cos a+\cos b=2 \cos \frac{a+b}{2} \cos \frac{a-b}{2} \\ & \cos a-\cos b=-2 \sin \frac{a+b}{2} \sin \frac{a-b}{2} \\ & \sin a+\sin b=2 \sin \frac{a+b}{2} \cos \frac{a-b}{2} \\ & \sin a-\sin b=2 \cos \frac{a+b}{2} \sin \frac{a-b}{2}\end{aligned}$

Mẹo giúp dễ dàng ghi nhớ công thức hơn: “Cos cộng cos bằng 2 cos cos, cos trừ cos bằng trừ 2 sin sin; sin cộng sin bằng 2 sin cos, sin trừ sin bằng 2 cos sin.”

Công thức biến tích thành tổng

$$\begin{aligned}& \cos a \cdot \cos b=\frac{1}{2}[\cos (a+b)+\cos (a-b)] \\& \sin a \cdot \sin b=-\frac{1}{2}[\cos (a+b)-\cos (a-b)] \\& \sin a \cdot \cos b=\frac{1}{2}[\sin (a+b)+\sin (a-b)]\end{aligned}$$

Kiến thức cơ bản

  sinu=sinv{u=v+k2πu=πv+k2π,  kZ  cosu=cosv{u=v+k2πu=v+k2π,  kZ  tanu=tanvu=v+kπ,  kZ  cotu=cotvu=v+kπ,  kZ\begin{aligned} & \sin u = \sin v \Leftrightarrow \begin{cases} u = v + k 2\pi \\ u = \pi - v + k 2\pi \end{cases}, \; k \in \mathbb{Z} \\ & \cos u = \cos v \Leftrightarrow \begin{cases} u = v + k 2\pi \\ u = -v + k 2\pi \end{cases}, \; k \in \mathbb{Z} \\ & \tan u = \tan v \Leftrightarrow u = v + k \pi, \; k \in \mathbb{Z} \\ & \cot u = \cot v \Leftrightarrow u = v + k \pi, \; k \in \mathbb{Z} \end{aligned}

Trên đây là tất cả các thông tin về công thức lượng giác mà bạn cần ghi nhớ. Hy vọng, với những chia sẻ thực tế trên đây của Học là Giỏi , sẽ giúp bạn dễ dàng chinh phục các đề thi sắp tới. 

Xem thêm:

Bảy hằng đẳng thức đáng nhớ trong Toán lớp 8

Cách giải phương trình bậc hai một ẩn và ứng dụng của nó

Chủ đề:
Bài viết xem nhiều

Đăng ký học thử ngay hôm nay

Để con học sớm - Ôn sâu và nhận ưu đãi học phí!

Bài viết liên quan

Đáp án, đề thi môn Toán vào 10 tỉnh Lâm Đồng 2025
schedule

Thứ ba, 17/6/2025 04:12 AM

Đáp án, đề thi môn Toán vào 10 tỉnh Lâm Đồng 2025

Học là Giỏi tổng hợp trọn bộ đáp án, đề thi môn Toán vào 10 tỉnh Lâm Đồng 2025 nhằm hỗ trợ học sinh thuận tiện trong việc so sánh kết quả và tự đánh giá năng lực làm bài.

Đáp án, đề thi môn Toán THPT Quốc gia 2025
schedule

Thứ sáu, 13/6/2025 07:11 AM

Đáp án, đề thi môn Toán THPT Quốc gia 2025

Bài viết cập nhật nhanh chóng và chính xác đề thi cùng đáp án giúp thí sinh so sánh kết quả và định hướng các nguyện vọng phù hợp. Học là Giỏi cung cấp đề thi chính thức môn Toán THPT Quốc gia 2025 được thi vào chiều ngày 26/06/2025 kèm đáp án chi tiết từng mã đề, hỗ trợ thí sinh tra cứu dễ dàng và tiện lợi.

Đáp án, đề thi môn Toán vào 10 tỉnh Đắk Nông 2025
schedule

Thứ sáu, 6/6/2025 09:55 AM

Đáp án, đề thi môn Toán vào 10 tỉnh Đắk Nông 2025

Học là Giỏi sẽ cung cấp đáp án, đề thi môn Toán vào 10 tỉnh Đắk Nông 2025 giúp các em dễ dàng đối chiếu bài làm, từ đó ước lượng điểm số một cách chính xác.

Đáp án, đề thi môn Toán vào 10 tỉnh Trà Vinh 2025
schedule

Thứ sáu, 6/6/2025 09:20 AM

Đáp án, đề thi môn Toán vào 10 tỉnh Trà Vinh 2025

Học là Giỏi cung cấp đầy đủ đáp án, đề thi môn Toán vào 10 tỉnh Trà Vinh 2025 nhằm hỗ trợ học sinh tra cứu, đánh giá điểm bài làm của bản thân.

Đáp án, đề thi môn Toán vào 10 tỉnh Long An 2025
schedule

Thứ sáu, 6/6/2025 09:13 AM

Đáp án, đề thi môn Toán vào 10 tỉnh Long An 2025

Học là Giỏi sẽ chia sẻ đáp án, đề thi môn Toán vào 10 tỉnh Long An 2025 được tổng hợp chi tiết, hỗ trợ học sinh đối chiếu kết quả và phụ huynh theo dõi tình hình thi cử chính xác.

Đáp án, đề thi môn Toán vào 10 tỉnh Hà Nam 2025
schedule

Thứ sáu, 6/6/2025 09:05 AM

Đáp án, đề thi môn Toán vào 10 tỉnh Hà Nam 2025

Để hỗ trợ các em học sinh kiểm tra lại phần làm bài, Học là Giỏi sẽ cập nhật đầy đủ đáp án, đề thi môn Toán vào 10 tỉnh Hà Nam 2025 một cách nhanh chóng và chính xác nhất.

message.svg zalo.png