Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Phương trình bậc hai là nội dung kiến thức sẽ học từ lớp 9. Đây là kiến thức không thể nào thiếu trong các bài kiểm tra, nó là kiến thức quan trọng và có nhiều ứng dụng trong thực tiễn. Hãy cùng theo chân Học là Giỏi ôn lại khái niệm, cách giải và ứng dụng của phương trình bậc nhất hai ẩn nhé!
Mục lục [Ẩn]
Cổng parabol trường Đại học Bách Khoa Hà Nội
Phương trình bậc hai một ẩn (nói gọn là phương trình bậc hai) là phương trình có dạng $a x^2+b x+c=0$, trong đó $x$ là ẩn; $a, b, c$ là những số cho trước gọi là các hệ số và $a \neq 0$.
Ví dụ: $x^2 +3x=0; x^2-3=0; x^2 -2x+1=0$ là những phương trình bậc hai một ẩn.
Xét phương trình $a x^2+b x+c=0(a \neq 0)$ và biệt thức $\Delta=b^2-4 a c$.
- Nếu $\Delta>0$ thì phương trình có hai nghiệm phân biệt
$x_1=\frac{-b+\sqrt{\Delta}}{2 a} ; x_2=\frac{-b-\sqrt{\Delta}}{2 a} .$
- Nếu $\Delta=0$ thì phương trình có nghiệm kép $x_1=x_2=\frac{-b}{2 a}$.
$\cdot$ Nếu $\Delta<0$ thì phương trình vô nghiệm.
Ví dụ: Giải phương trình: $2 x^2-x-3=0$
a) Phương trình có các hệ số $a=2, b=-1, c=-3$,
$\Delta=(-1)^2-4 \cdot 2 \cdot(-3)=25>0.$
Do $\Delta>0$ nên phương trình đã cho có hai nghiệm phân biệt là:
$x_1=\frac{-(-1)+\sqrt{25}}{2.2}=\frac{3}{2} ; x_2=\frac{-(-1)-\sqrt{25}}{2.2}=-1 \text {. }$
Ngoài ra ta có công thức nghiệm thu gọn cho phương trình bậc hai như sau:
Xét phương trình $a x^2+b x+c=0(a \neq 0)$ vối $b=2 b^{\prime}$ và $\Delta^{\prime}=b^{\prime 2}-a c$.
- Nếu $\Delta^{\prime}>0$ thì phương trình có hai nghiệm phân biệt $x_1=\frac{-b^{\prime}+\sqrt{\Delta^{\prime}}}{a};\quadx_2=\frac{-b^{\prime}-\sqrt{\Delta^{\prime}}}{a} .$
- Nếu $\Delta^{\prime}=0$ thì phương trình có nghiệm kép $x_1=x_2=\frac{-b^{\prime}}{a}$.
- Nếu $\Delta^{\prime}<0$ thì phương trình vô nghiệm.
Nhận xét: Để giải bài toán trên bằng cách lập phương trình bậc hai, ta có thể làm như sau:
Bước 1. Lập phương trình bậc hai
- Chọn ẩn số và đặt điều kiện cho ẩn số
- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết
- Lập phương trình bậc hai biểu thị mối quan hệ giữa các đại lượng
Bước 2. Giải phương trình bậc hai
Bước 3. Kết luận
- Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thoả mãn, nghiệm nào không thoả mãn điều kiện của ẩn
- Đưa ra câu trả lời.
Ví dụ: Bác Nga gửi tiết kiệm 200 triệu đồng kì hạn 12 tháng ở một ngân hàng. Sau kì hạn 12 tháng, tiền lãi của kì hạn đó được cộng vào tiền vốn, rồi bác Nga tiếp tục đem gửi cho kì hạn 12 tháng tiếp theo. Tổng số tiền mà bác Nga nhận được sau khi gửi 24 tháng trên là 213635600 đồng. Tìm lãi suất tính theo năm của ngân hàng đó, biết trong 24 tháng đó, lãi suất ngân hàng không thay đổi và bác Nga không rút tiền ra khỏi ngân hàng.
Bài giải
Gọi lãi suất tính theo năm của ngân hàng đó là $x \% /$ năm $(x>0)$.
Số tiền bác Nga có được sau khi gửi tiết kiệm 12 tháng đầu tiên là:
$200+200 \cdot \frac{x}{100}=200\left(1+\frac{x}{100}\right) \text { (triệu đồng). }$
Số tiền bác Nga có được sau khi gửi tiết kiệm 24 tháng là:
$\begin{aligned} 200\left(1+\frac{x}{100}\right)+200\left(1+\frac{x}{100}\right) \cdot \frac{x}{100} & =200\left(1+\frac{x}{100}\right)\left(1+\frac{x}{100}\right) \\& =200\left(1+\frac{x}{100}\right)^2 \text { (triệu đồng). }\end{aligned}$
Vì sau 24 tháng gửi tiết kiệm bác Nga có tổng số tiền là 213635600 đồng nên ta có phương trình:
$200\left(1+\frac{x}{100}\right)^2=213,6356 \text { hay } \frac{1}{50}(100+x)^2=213,6356 \text {; tức là }(100+x)^2=10681,78 \text {. }$
Giải phương trình trên với $x>0$, ta có:
$\begin{aligned} 100+x & =\sqrt{10681,78} \\ 100+x & = 103,35\\x & =3,4 \text { (thoả mãn điều kiện } x>0 \text { ). }\end{aligned}$
Vậy lãi suất tính theo năm của ngân hàng đó là $3,4\%/$năm.
Xem thêm:
Làm thế nào để giải hệ phương trình bậc nhất hai ẩn
Bí kíp học thuộc 7 hằng đẳng thức lớp 8
Như vậy, Học là Giỏi đã tổng hợp các kiến thức quan trọng về phương trình bậc hai một ẩn. Học là Giỏi hi vọng rằng, các bạn học sinh sẽ làm tốt dạng toán này. Chúc các bạn học tốt.
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Bí kíp chinh phục các hằng đẳng thức mở rộng
Thứ tư, 14/8/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Thể thơ song thất lục bát trong văn chương Việt Nam
Thứ ba, 28/5/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ ba, 11/3/2025 07:55 AM
Bí quyết ghi nhớ bảng nhân 4 qua các bài tập thú vị
Bảng nhân 4 là một trong những kiến thức quan trọng trong toán học tiểu học, giúp học sinh rèn luyện tư duy và kỹ năng tính nhẩm nhanh. Gia sư online Học là Giỏi sẽ giúp bạn nắm vững bảng nhân 4 trong bài viết để bạn áp dụng phép nhân đối với các bài tập một cách hiệu quả.
Thứ ba, 11/3/2025 06:54 AM
Học thuộc bảng nhân 3 chỉ trong vài phút
Bảng nhân 3 là một trong những bảng cửu chương quan trọng giúp chúng ta ghi nhớ phép nhân với số 3 dễ dàng. Trong bài viết dưới đây, gia sư online Học là Giỏi sẽ hướng dẫn chi tiết về bảng nhân 3 để bạn áp dụng phép nhân này hiệu quả nhé.
Thứ hai, 10/3/2025 09:32 AM
Bảng nhân 2 là gì? Các phép tính trong bảng nhân 2
Bảng nhân 2 giúp bạn tính nhanh và giải toán dễ dàng hơn cho phép nhân với số 2. Trong bài viết dưới đây, gia sư online Học là Giỏi sẽ cung cấp chi tiết về bảng nhân 2 để bạn có thể nắm vững phép nhân này nhé.
Thứ sáu, 7/3/2025 10:10 AM
Cách học bảng cửu chương nhân, chia nhanh chóng và hiệu quả
Bảng cửu chương là một công cụ tính toán giúp bạn giải quyết nhanh gọn mọi bài toán trong học tập và cuộc sống. Thành thạo bảng cửu chương hỗ trợ bạn tư duy logic, tính toán linh hoạt và áp dụng vào thực tế dễ dàng hơn. Gia sư online Học là Giỏi mang đến cho bạn bảng cửu chương chi tiết dưới đây để giúp việc ghi nhớ hay học thuộc trở nên dễ dàng và hiệu quả hơn.
Thứ tư, 12/2/2025 06:38 AM
Tổng hợp các dạng toán Vi-ét thi vào lớp 10 mới nhất
Hệ thức Vi-ét là một công cụ quan trọng giúp giải nhanh các bài toán về nghiệm của phương trình bậc hai. Việc nắm vững các dạng toán Vi-ét thi vào lớp 10 sẽ giúp học sinh nâng cao tư duy toán học để dễ dàng giải đề thi. Hôm nay cùng gia sư online Học là Giỏi sẽ hệ thống lại các phương pháp, đưa ra ví dụ cụ thể để giúp bạn làm chủ dạng toán này một cách hiệu quả.
Thứ ba, 26/11/2024 09:39 AM
Tứ giác nội tiếp là gì? Tính chất của tứ giác nội tiếp
Tứ giác nội tiếp là một trong những khái niệm quan trọng trong hình học lớp 9, đặc biệt khi tìm hiểu về các mối quan hệ giữa các điểm và đường tròn. Hãy cùng gia sư online Học là Giỏi khám phá tứ giác nội tiếp này là gì và chúng có các tính chất như thế nào nhé.