Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức

Bí kíp học thuộc 7 hằng đẳng thức lớp 8

schedule.svg

Thứ ba, 7/5/2024 02:11 AM

Tác giả: Admin Hoclagioi

Hằng đẳng thức là nội dung quan trọng trong chương trình toán 8. Nếu bạn không thuộc nó, bạn sẽ không áp dụng vào giải bài tập được? Vậy làm thế nào để ghi nhớ được 7 hằng đẳng thức đáng nhớ này. Sau đây là bí kíp học thuộc 7 hằng đẳng thức lớp 8. Hãy cùng Học là Giỏi khám phá nhé!

Mục lục [Ẩn]

Trước hết chúng ta sẽ nhắc lại các kiến thức cần nhớ của 7 hằng đẳng thức lớp 8 nhé!

7 hằng đẳng thức đáng nhớ

Công thức của 7 hằng đẳng thức đáng nhớ là một phần quan trọng. Nó được ứng dụng rất nhiều để giải các bài toán trong số học. Bảy hằng đẳng thức này bao gồm: bình phương của một tổng, bình phương của một hiệu, hiệu của hai bình phương, lập phương của một tổng, lập phương của một hiệu, tổng hai lập phương và cuối cùng là hiệu hai lập phương. 

7 hằng đẳng thức đáng nhớ

7 hằng đẳng thức lớp 8

7 hằng đẳng thức đáng nhớ là công cụ quan trọng giúp bạn tính nhanh, phân tích đa thức và giải toán hiệu quả. Học kỹ và áp dụng đúng sẽ giúp bạn tự tin hơn với môn toán. Hãy cùng khám phá từng công thức và ví dụ cụ thể nhé!

Bình phương của một tổng: 

(a+b)2=a2+2ab+b2

Phát biểu bằng lời: Bình phương của một tổng bằng bình phương số thứ nhất, cộng hai lần tích số thứ nhất, số thứ hai, cộng với bình phương số thứ hai.

Ví dụ: Nếu bạn cần tính (x+4)2(x + 4)^2, hãy sử dụng công thức trên. Thay aa bằng xx và bb bằng 44:
(x+4)2=x2+2x4+42=x2+8x+16(x + 4)^2 = x^2 + 2 \cdot x \cdot 4 + 4^2 = x^2 + 8x + 16

Bình phương của một hiệu

 (ab)2=a22ab+b2

Phát biểu bằng lời: Bình phương của một hiệu bằng bình phương số thứ nhất, trừ hai lần tích số thứ nhất, số thứ hai, cộng với bình phương số thứ hai.

Ví dụ: Để tính (x3)2(x - 3)^2, thay aa bằng xx và bb bằng 33:
(x3)2=x22x3+32=x26x+9(x - 3)^2 = x^2 - 2 \cdot x \cdot 3 + 3^2 = x^2 - 6x + 9

Hiu hai bình phương

a2b2=(ab)(a+b)

Phát biểu bằng lời: Hiệu hai bình phương bằng hiệu của số thứ nhất với số thứ hai, nhân với tổng của số thứ nhất với số thứ hai.

Ví dụ: Để giải 52325^2 - 3^2, áp dụng công thức:
5232=(53)(5+3)=28=165^2 - 3^2 = (5 - 3)(5 + 3) = 2 \cdot 8 = 16

Lập phương của một tổng

(a+b)3=a3+3a2b+3ab2+b3

Phát biểu bằng lời: Lập phương của một tổng bằng lập phương của số thứ nhất, cộng ba lần tích bình phương của số thứ nhất với số thứ hai, cộng ba lần tích số thứ nhất với bình phương của số thứ hai, cộng lập phương của số thứ hai.

Ví dụ: Nếu bạn cần tính (x+2)3(x + 2)^3, thay aa bằng xx và bb bằng 22:
(x+2)3=x3+3x22+3x22+23=x3+6x2+12x+8(x + 2)^3 = x^3 + 3 \cdot x^2 \cdot 2 + 3 \cdot x \cdot 2^2 + 2^3 = x^3 + 6x^2 + 12x + 8

Lập phương của một hiệu

(ab)3=a33a2b+3ab2b3

Phát biểu bằng lời: Lập phương của một tổng bằng lập phương của số thứ nhất, trừ ba lần tích bình phương của số thứ nhất với số thứ hai, cộng ba lần tích số thứ nhất với bình phương của số thứ hai, trừ lập phương của số thứ hai.

Ví dụ: Để tính (x1)3(x - 1)^3, thay aa bằng xx và bb bằng 11:
(x1)3=x33x21+3x1213=x33x2+3x1(x - 1)^3 = x^3 - 3 \cdot x^2 \cdot 1 + 3 \cdot x \cdot 1^2 - 1^3 = x^3 - 3x^2 + 3x - 1

Tổng của hai lập phương

a3+b3=(a+b)(a2ab+b2)

Phát biểu bằng lời: Tổng hai lập phương bằng tổng của số thứ nhất và số thứ hai nhân với bình phương thiếu của hiệu.

Ví dụ: Để phân tích x3+27x^3 + 27, thay aa bằng xx và bb bằng 33:
x3+27=(x+3)(x23x+9)x^3 + 27 = (x + 3)(x^2 - 3x + 9)

Hiệu của hai lập phương

a3b3=(ab)(a2+ab+b2)

Phát biểu bằng lời: Hiệu hai lập phương bằng hiệu của số thứ nhất và số thứ hai nhân với bình phương thiếu của tổng.

Ví dụ: Để phân tích x38x^3 - 8, thay aa bằng xx và bb bằng 22:
x38=(x2)(x2+2x+4)x^3 - 8 = (x - 2)(x^2 + 2x + 4)

Bí kíp học thuộc 7 hằng đẳng thức lớp 8

Có mục tiêu rõ ràng

Các em cần xác định rõ kiến thức cần phải học: 7 hằng đẳng thức lớp 8. Nếu không thuộc chúng thì sẽ rất khó để làm các bài tập liên quan như khai triển hằng đẳng thức, phân tích đa thức thành nhân tử, rút gọn biểu thức… Do đó, chúng mình thấy việc học thuộc được 7 hằng đẳng thức lớp 8 là hết sức quan trọng và cần thiết.

Bí kíp học thuộc 7 hằng đẳng thức lớp 8

Tâm thế chủ động

Hãy chủ động học thuộc mà không phải bị bắt ép. Học với tâm thế thoải mái, chủ động, tích cực khi đó não bộ sẽ hoạt động ghi nhớ tốt hơn.

Luyện tập thường xuyên

Học phải đi đôi với hành. Học lí thuyết xong, chúng mình áp dụng nó vào làm bài tập theo mức độ từ dễ đến khó, từ đơn giản đến phức tạp, luyện tập thường xuyên sẽ giúp mình nhớ lâu hơn, hình thành phản xạ mỗi khi gặp dạng toán đó.

Chăm chỉ tập luyện

Ghi nhớ qua bài hát hoặc bài thơ

Hiện có một số phiên bản về 7 hằng đẳng thức lớp 8 như bài “Sau tất cả (Hằng đẳng thức Version) của Nhật Anh Trắng,... hoặc có thể tự sáng tác theo cách của mình nhé.

Bài tập 7 hằng đẳng thức

Dưới đây là một số bài tập giúp bạn luyện tập áp dụng 7 hằng đẳng thức đáng nhớ, kèm theo hướng dẫn giải chi tiết.

Bài 1: Tính giá trị biểu thức (x+3)2(x + 3)^2
Áp dụng công thức: (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2
Hướng dẫn giải:

(x+3)2=x2+2x3+32=x2+6x+9.(x + 3)^2 = x^2 + 2 \cdot x \cdot 3 + 3^2 = x^2 + 6x + 9.

Bài 2: Tính giá trị biểu thức (x5)2(x - 5)^2
Áp dụng công thức: (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2
Hướng dẫn giải:

(x5)2=x22x5+52=x210x+25.(x - 5)^2 = x^2 - 2 \cdot x \cdot 5 + 5^2 = x^2 - 10x + 25.

Bài 3: Phân tích đa thức x249x^2 - 49
Áp dụng công thức: a2b2=(ab)(a+b)a^2 - b^2 = (a - b)(a + b)
Hướng dẫn giải:

x249=(x7)(x+7).x^2 - 49 = (x - 7)(x + 7).

Bài 4: Tính giá trị biểu thức (x+2)3(x + 2)^3
Áp dụng công thức: (a+b)3=a3+3a2b+3ab2+b3(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3
Hướng dẫn giải:

(x+2)3=x3+3x22+3x22+23=x3+6x2+12x+8.(x + 2)^3 = x^3 + 3x^2 \cdot 2 + 3x \cdot 2^2 + 2^3 = x^3 + 6x^2 + 12x + 8.

Bài 5: Tính giá trị biểu thức (x4)3(x - 4)^3
Áp dụng công thức: (ab)3=a33a2b+3ab2b3(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3
Hướng dẫn giải:

(x4)3=x33x24+3x4243=x312x2+48x64.(x - 4)^3 = x^3 - 3x^2 \cdot 4 + 3x \cdot 4^2 - 4^3 = x^3 - 12x^2 + 48x - 64.

Bài 6: Phân tích đa thức x3+27x^3 + 27
Áp dụng công thức: a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a + b)(a^2 - ab + b^2)
Hướng dẫn giải:

x3+27=(x+3)(x23x+9).x^3 + 27 = (x + 3)(x^2 - 3x + 9).

Bài 7: Phân tích đa thức x38x^3 - 8
Áp dụng công thức: a3b3=(ab)(a2+ab+b2)a^3 - b^3 = (a - b)(a^2 + ab + b^2)
Hướng dẫn giải:

x38=(x2)(x2+2x+4).x^3 - 8 = (x - 2)(x^2 + 2x + 4).

Bài tập nâng cao và hướng dẫn giải

Bài 1:
Tính giá trị biểu thức (x+2)2(x3)2(x + 2)^2 - (x - 3)^2
Áp dụng công thức: Hiệu hai bình phương a2b2=(ab)(a+b)a^2 - b^2 = (a - b)(a + b)
Hướng dẫn giải:
Áp dụng công thức hiệu hai bình phương, ta có:

(x+2)2(x3)2=[(x+2)(x3)][(x+2)+(x3)].(x + 2)^2 - (x - 3)^2 = \left[ (x + 2) - (x - 3) \right] \left[ (x + 2) + (x - 3) \right].

Tính các biểu thức trong ngoặc:

=(x+2x+3)(x+2+x3)=(5)(2x1).= (x + 2 - x + 3)(x + 2 + x - 3) = (5)(2x - 1).

Vậy,

(x+2)2(x3)2=5(2x1).(x + 2)^2 - (x - 3)^2 = 5(2x - 1).

Bài 2:
Giải phương trình (x+4)2(x2)2=24(x + 4)^2 - (x - 2)^2 = 24
Áp dụng công thức: Hiệu hai bình phương a2b2=(ab)(a+b)a^2 - b^2 = (a - b)(a + b)
Hướng dẫn giải:
Áp dụng công thức hiệu hai bình phương:

(x+4)2(x2)2=[(x+4)(x2)][(x+4)+(x2)](x + 4)^2 - (x - 2)^2 = \left[ (x + 4) - (x - 2) \right] \left[ (x + 4) + (x - 2) \right]

=(x+4x+2)(x+4+x2)=(6)(2x+2).= (x + 4 - x + 2)(x + 4 + x - 2) = (6)(2x + 2).

Vậy phương trình trở thành:

6(2x+2)=24.6(2x + 2) = 24.

Chia cả hai vế cho 6:

2x+2=4  2x=2  x=1.2x + 2 = 4 \quad \Rightarrow \quad 2x = 2 \quad \Rightarrow \quad x = 1.

Bài 3:
Phân tích đa thức x210x+25x^2 - 10x + 25thành nhân tử.
Áp dụng công thức: Bình phương của một hiệu (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2
Hướng dẫn giải:
Quan sát thấy x210x+25x^2 - 10x + 25có thể viết dưới dạng (x5)2(x - 5)^2

x210x+25=(x5)2.x^2 - 10x + 25 = (x - 5)^2.

Kết Luận

Học là Giỏi mong rằng với các bí kíp học thuộc 7 hằng đẳng thức lớp 8, các em sẽ dễ dàng học thuộc được 7 hằng đẳng thức đó và áp dụng vào làm bài tập liên quan một cách tốt nhất.

Chủ đề:

Đăng ký học thử ngay hôm nay

Để con học sớm - Ôn sâu và nhận ưu đãi học phí!

Bài viết liên quan

Tổng hợp đề ôn tập hè lớp 5 lên 6 môn toán có chọn lọc
schedule

Thứ sáu, 16/5/2025 09:20 AM

Tổng hợp đề ôn tập hè lớp 5 lên 6 môn toán có chọn lọc

Đối với các bạn học sinh chuẩn bị lên lớp 6, việc ôn tập hè lớp 5 lên 6 môn toán giúp nhớ lại chương trình học cũ, tự tin bước vào cấp học quan trọng tiếp theo. Hôm nay gia sư online Học là Giỏi cung cấp kho đề ôn luyện đa dạng để hỗ trợ các em củng cố kiến thức vững chắc trong quá trình học tập nhé.

Kinh nghiệm chọn gia sư toán lớp 11 tại Hà Nội phù hợp nhất
schedule

Thứ tư, 7/5/2025 08:59 AM

Kinh nghiệm chọn gia sư toán lớp 11 tại Hà Nội phù hợp nhất

Nhiều học sinh luôn gặp khó khăn với chương trình toán nâng cao và thiếu các phương pháp học hiệu quả khi vào lớp 11. Vì vậy, việc tìm gia sư toán lớp 11 tại Hà Nội trở thành giải pháp tối ưu giúp học sinh nắm chắc kiến thức và cải thiện thành tích học tập. Gia sư online Học là Giỏi sẽ giúp bạn hiểu cách lựa chọn gia sư toán lớp 11 tại Hà Nội sao cho phù hợp nhất.

Tại sao cần tìm gia sư toán lớp 10 tại Hà Nội?
schedule

Thứ tư, 7/5/2025 07:52 AM

Tại sao cần tìm gia sư toán lớp 10 tại Hà Nội?

Lựa chọn gia sư toán lớp 10 tại Hà Nội giúp con kịp thời tháo gỡ những vướng mắc trong quá trình học, đồng thời tạo tiền đề vững chắc để con tự tin trước những thử thách học tập. Trong bài viết dưới đây, Gia sư online Học là Giỏi sẽ chỉ cho các bậc phụ huynh cách tìm gia sư toán lớp 10 tại Hà Nội sao cho phù hợp nhất nhé.

Làm thế nào để chọn gia sư toán lớp 7 tại Hà Nội?
schedule

Thứ hai, 5/5/2025 10:27 AM

Làm thế nào để chọn gia sư toán lớp 7 tại Hà Nội?

Với học sinh lớp 7, toán học là nền tảng của các môn học liên quan đến tính toán và cũng là bước đệm cho những kỳ thi quan trọng sau này. Gia sư online Học là Giỏi sẽ chia sẻ cách chọn gia sư toán lớp 7 tại Hà Nội trong bài viết dưới đây nhé.

Bí quyết cách học giỏi toán mọi học sinh cần biết
schedule

Thứ hai, 28/4/2025 06:51 AM

Bí quyết cách học giỏi toán mọi học sinh cần biết

Toán học luôn là một môn học quan trọng trong chương trình giáo dục và cả trong cuộc sống hàng ngày. Tuy nhiên, không phải ai cũng dễ dàng nắm vững được các kiến thức và kỹ năng cần thiết để học giỏi môn toán. Hãy cùng gia sư online Học là Giỏi cung cấp những cách học giỏi toán đơn giản, giúp bạn tự tin và thành công trong việc học tập.

Mẹo học bảng nhân 5 cực dễ hiểu cho học sinh tiểu học
schedule

Thứ sáu, 25/4/2025 07:16 AM

Mẹo học bảng nhân 5 cực dễ hiểu cho học sinh tiểu học

Bảng nhân 5 là một phần không thể thiếu trong hệ thống bảng cửu chương hỗ trợ học sinh ghi nhớ và vận dụng phép nhân với số 5 một cách nhanh chóng. Hôm nay gia sư online Học là Giỏi sẽ cùng bạn khám phá chi tiết bảng nhân 5 nhé.

message.svg zalo.png