Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Bất đẳng thức Bunhiacopxki thường được sử dụng nhiều trong các bài toán chứng minh bất đẳng thức nâng cao. Học là Giỏi sẽ cùng các bạn tổng hợp các kiến thức về bất đẳng thức Bunhiacopxki qua bài viết dưới đây.
Mục lục [Ẩn]
Bất đẳng thức Bunhiacopxki có tên gọi ban đầu bất đẳng thức Cauchy – Bunhiacopxki – Schwarz sau đó rút gọn lại gọi theo tên của nhà toán học người Nga Bunhiacopxki. Bất đẳng thức này do 3 nhà toán học nghiên cứu và phát triển. Trong lĩnh vực toán học, bất đẳng thức này được ứng dụng khá nhiều để giải các bài toán chứng minh bất đẳng thức và tìm cực trị.
$\left(a^2+b^2\right)\left(c^2+d^2\right) \geq(a c+b d)^2$
Dấu “=” xảy ra khi ac = bd
Với hai bộ số $\left(a_1, a_2, \ldots, a_n\right)$ và $\left(b_1, b_2, \ldots, b_n\right)$, ta có:
$\left(a_1^2+a_2^2+\ldots+a_n^2\right) \cdot\left(b_1^2+b_2^2+\ldots+b_n^2\right) \geq\left(a_1 b_1+a_2 b_2+\ldots+a_n b_n\right)^2$
Dấu “=” xảy ra khi $\frac{a_1}{b_1}=\frac{a_2}{b_2}=\ldots=\frac{a_n}{b_n}$
Nếu một số nào đó (i = 1, 2, 3,…, n) bằng 0 thì đẳng thức tương ứng bằng 0.
n = 2 | n = 3 |
$\left(a^2+b^2\right)\left(x^2+y^2\right) \geq(a x+b y)^2$ | $\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right) \geq(a x+b y+c z)^2$ |
$\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)} \geq|\mathrm{ax}+b y|$ | $\sqrt{\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)} \geq|a x+b y+c z|$ |
$\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)} \geq a x+b y$ | $\sqrt{\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)} \geq a x+b y+c z$ |
$\begin{aligned} & \frac{a^2}{x}+\frac{b^2}{y} \geq \frac{(a+b)^2}{x+y} \\ & (x, y>0)\end{aligned}$ | $\begin{aligned} & \frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z} \geq \frac{(a+b+c)^2}{x+y+z} \\ & (x, y, z>0)\end{aligned}$ |
Đẳng thức xảy ra khi $\frac{a}{x}=\frac{b}{y}$ | Đẳng thức xảy ra khi $\frac{a}{x}=\frac{b}{y}=\frac{c}{z}$ |
Nếu $a_1 x_1+\ldots+a_n x_n=C$ thì $\min \left(x_1^2+\ldots+x_n^2\right)=\frac{C}{a_1^2+\ldots+a_n^2}$ đạt được khi $\frac{x_1}{a_1}=\ldots=\frac{x_n}{a_n}$
Nếu $x_1^2+\ldots+x_n^2=C^2$ (không đổi) thì:
$\operatorname{Max}\left(a_1 x_1+\ldots+a_n x_n\right)=C \cdot \sqrt{a_1^2+\ldots+a_n^2}$ đạt được khi $a_1 x_1=\ldots=a_n x_n \geq 0$.
$\operatorname{Min}\left(a_1 x_1+\ldots+a_n x_n\right)=-C \cdot \sqrt{a_1^2+\ldots+a_n^2}$ và dấu "=" xảy ra khi $a_1 x_1=\ldots=a_n x_n \leq 0$
Chúng ta có thể chứng minh bất đẳng thức Bunhiacopxki như sau:
$\begin{aligned} & \left(a^2+b^2\right)\left(c^2+d^2\right) \geq(a c+b d)^2 \\ & \Leftrightarrow(a c)^2+(a d)^2+(b c)^2+(b d)^2 \geq(a c)^2+2 a b c d+(b d)^2 \\ & \Leftrightarrow(a d)^2+(b c)^2 \geq 2 a b c d \\ & \Leftrightarrow(a d)^2-2 a b c d+(b c)^2 \geq 0 \\ & \Leftrightarrow(a d-b c)^2 \geq 0 \text { (luôn đúng) }\end{aligned}$
Cho các số a, b, c là các số thực dương bất kỳ. Chứng minh rằng:
$\sqrt{\frac{a+b}{a+b+c}}+\sqrt{\frac{b+c}{a+b+c}}+\sqrt{\frac{c+a}{a+b+c}} \leq 6$
Hướng dẫn giải
Áp dụng bất đẳng thức bunhiacopxki cho phân thức, ta có:
hơn:
(Điều phải chứng minh).
Dấu "=" xảy ra khi và chỉ khi các giá trị $\mathrm{a}=\mathrm{b}=\mathrm{c}$
Chứng minh rằng nếu a, b, c là độ dài ba cạnh của một tam giác có p là nửa chu vi thì $\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c} \leq \sqrt{3 p}$
Hướng dẫn giải
Áp dụng bất đẳng thức Bunhiacopxki có:
$\begin{aligned} & \text { 1. } \sqrt{p-a}+1 \cdot \sqrt{p-b}+1 \cdot \sqrt{p-c} \leq \sqrt{\left(1^2+1^2+1^2\right)(p-a+p-b+p-c)} \\ & \Leftrightarrow \sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c} \leq \sqrt{3(3 p-2 p)}=\sqrt{3 p} \text { (điều phải chứng minh) }\end{aligned}$
Dấu "=" xảy ra khi và chỉ khi $\frac{1}{p-a}=\frac{1}{p-b}=\frac{1}{p-c} \Leftrightarrow a=b=c$ hay tam giác là tam giác đều.
Xem thêm:
Tổng hợp lí thuyết về bất đẳng thức Cosi
Bảy hằng đẳng thức đáng nhớ trong Toán lớp 8
Trên đây là công thức của bất đẳng thức Bunhiacopxki thường gặp và nâng cao. Học là Giỏi mong rằng, nó sẽ gợi ý cho các bạn cách hệ thống kiến thức sáng tạo và đẹp theo cách của riêng mình, biến các công thức khô khan trở nên sinh động hơn, từ đó giúp chúng mình nhớ và áp dụng giải được các bài toán tính đạo hàm trong chương trình toán phổ thông nhé.
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Bí kíp chinh phục các hằng đẳng thức mở rộng
Thứ tư, 14/8/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Thể thơ song thất lục bát trong văn chương Việt Nam
Thứ ba, 28/5/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ sáu, 16/5/2025 09:20 AM
Tổng hợp đề ôn tập hè lớp 5 lên 6 môn toán có chọn lọc
Đối với các bạn học sinh chuẩn bị lên lớp 6, việc ôn tập hè lớp 5 lên 6 môn toán giúp nhớ lại chương trình học cũ, tự tin bước vào cấp học quan trọng tiếp theo. Hôm nay gia sư online Học là Giỏi cung cấp kho đề ôn luyện đa dạng để hỗ trợ các em củng cố kiến thức vững chắc trong quá trình học tập nhé.
Thứ tư, 7/5/2025 08:59 AM
Kinh nghiệm chọn gia sư toán lớp 11 tại Hà Nội phù hợp nhất
Nhiều học sinh luôn gặp khó khăn với chương trình toán nâng cao và thiếu các phương pháp học hiệu quả khi vào lớp 11. Vì vậy, việc tìm gia sư toán lớp 11 tại Hà Nội trở thành giải pháp tối ưu giúp học sinh nắm chắc kiến thức và cải thiện thành tích học tập. Gia sư online Học là Giỏi sẽ giúp bạn hiểu cách lựa chọn gia sư toán lớp 11 tại Hà Nội sao cho phù hợp nhất.
Thứ tư, 7/5/2025 07:52 AM
Tại sao cần tìm gia sư toán lớp 10 tại Hà Nội?
Lựa chọn gia sư toán lớp 10 tại Hà Nội giúp con kịp thời tháo gỡ những vướng mắc trong quá trình học, đồng thời tạo tiền đề vững chắc để con tự tin trước những thử thách học tập. Trong bài viết dưới đây, Gia sư online Học là Giỏi sẽ chỉ cho các bậc phụ huynh cách tìm gia sư toán lớp 10 tại Hà Nội sao cho phù hợp nhất nhé.
Thứ hai, 5/5/2025 10:27 AM
Làm thế nào để chọn gia sư toán lớp 7 tại Hà Nội?
Với học sinh lớp 7, toán học là nền tảng của các môn học liên quan đến tính toán và cũng là bước đệm cho những kỳ thi quan trọng sau này. Gia sư online Học là Giỏi sẽ chia sẻ cách chọn gia sư toán lớp 7 tại Hà Nội trong bài viết dưới đây nhé.
Thứ hai, 28/4/2025 06:51 AM
Bí quyết cách học giỏi toán mọi học sinh cần biết
Toán học luôn là một môn học quan trọng trong chương trình giáo dục và cả trong cuộc sống hàng ngày. Tuy nhiên, không phải ai cũng dễ dàng nắm vững được các kiến thức và kỹ năng cần thiết để học giỏi môn toán. Hãy cùng gia sư online Học là Giỏi cung cấp những cách học giỏi toán đơn giản, giúp bạn tự tin và thành công trong việc học tập.
Thứ sáu, 25/4/2025 07:16 AM
Mẹo học bảng nhân 5 cực dễ hiểu cho học sinh tiểu học
Bảng nhân 5 là một phần không thể thiếu trong hệ thống bảng cửu chương hỗ trợ học sinh ghi nhớ và vận dụng phép nhân với số 5 một cách nhanh chóng. Hôm nay gia sư online Học là Giỏi sẽ cùng bạn khám phá chi tiết bảng nhân 5 nhé.