Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Bất đẳng thức Bunhiacopxki thường được sử dụng nhiều trong các bài toán chứng minh bất đẳng thức nâng cao. Học là Giỏi sẽ cùng các bạn tổng hợp các kiến thức về bất đẳng thức Bunhiacopxki qua bài viết dưới đây.
Mục lục [Ẩn]
Bất đẳng thức Bunhiacopxki có tên gọi ban đầu bất đẳng thức Cauchy – Bunhiacopxki – Schwarz sau đó rút gọn lại gọi theo tên của nhà toán học người Nga Bunhiacopxki. Bất đẳng thức này do 3 nhà toán học nghiên cứu và phát triển. Trong lĩnh vực toán học, bất đẳng thức này được ứng dụng khá nhiều để giải các bài toán chứng minh bất đẳng thức và tìm cực trị.
$\left(a^2+b^2\right)\left(c^2+d^2\right) \geq(a c+b d)^2$
Dấu “=” xảy ra khi ac = bd
Với hai bộ số $\left(a_1, a_2, \ldots, a_n\right)$ và $\left(b_1, b_2, \ldots, b_n\right)$, ta có:
$\left(a_1^2+a_2^2+\ldots+a_n^2\right) \cdot\left(b_1^2+b_2^2+\ldots+b_n^2\right) \geq\left(a_1 b_1+a_2 b_2+\ldots+a_n b_n\right)^2$
Dấu “=” xảy ra khi $\frac{a_1}{b_1}=\frac{a_2}{b_2}=\ldots=\frac{a_n}{b_n}$
Nếu một số nào đó (i = 1, 2, 3,…, n) bằng 0 thì đẳng thức tương ứng bằng 0.
n = 2 | n = 3 |
$\left(a^2+b^2\right)\left(x^2+y^2\right) \geq(a x+b y)^2$ | $\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right) \geq(a x+b y+c z)^2$ |
$\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)} \geq|\mathrm{ax}+b y|$ | $\sqrt{\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)} \geq|a x+b y+c z|$ |
$\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)} \geq a x+b y$ | $\sqrt{\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)} \geq a x+b y+c z$ |
$\begin{aligned} & \frac{a^2}{x}+\frac{b^2}{y} \geq \frac{(a+b)^2}{x+y} \\ & (x, y>0)\end{aligned}$ | $\begin{aligned} & \frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z} \geq \frac{(a+b+c)^2}{x+y+z} \\ & (x, y, z>0)\end{aligned}$ |
Đẳng thức xảy ra khi $\frac{a}{x}=\frac{b}{y}$ | Đẳng thức xảy ra khi $\frac{a}{x}=\frac{b}{y}=\frac{c}{z}$ |
Nếu $a_1 x_1+\ldots+a_n x_n=C$ thì $\min \left(x_1^2+\ldots+x_n^2\right)=\frac{C}{a_1^2+\ldots+a_n^2}$ đạt được khi $\frac{x_1}{a_1}=\ldots=\frac{x_n}{a_n}$
Nếu $x_1^2+\ldots+x_n^2=C^2$ (không đổi) thì:
$\operatorname{Max}\left(a_1 x_1+\ldots+a_n x_n\right)=C \cdot \sqrt{a_1^2+\ldots+a_n^2}$ đạt được khi $a_1 x_1=\ldots=a_n x_n \geq 0$.
$\operatorname{Min}\left(a_1 x_1+\ldots+a_n x_n\right)=-C \cdot \sqrt{a_1^2+\ldots+a_n^2}$ và dấu "=" xảy ra khi $a_1 x_1=\ldots=a_n x_n \leq 0$
Chúng ta có thể chứng minh bất đẳng thức Bunhiacopxki như sau:
$\begin{aligned} & \left(a^2+b^2\right)\left(c^2+d^2\right) \geq(a c+b d)^2 \\ & \Leftrightarrow(a c)^2+(a d)^2+(b c)^2+(b d)^2 \geq(a c)^2+2 a b c d+(b d)^2 \\ & \Leftrightarrow(a d)^2+(b c)^2 \geq 2 a b c d \\ & \Leftrightarrow(a d)^2-2 a b c d+(b c)^2 \geq 0 \\ & \Leftrightarrow(a d-b c)^2 \geq 0 \text { (luôn đúng) }\end{aligned}$
Cho các số a, b, c là các số thực dương bất kỳ. Chứng minh rằng:
$\sqrt{\frac{a+b}{a+b+c}}+\sqrt{\frac{b+c}{a+b+c}}+\sqrt{\frac{c+a}{a+b+c}} \leq 6$
Hướng dẫn giải
Áp dụng bất đẳng thức bunhiacopxki cho phân thức, ta có:
hơn:
(Điều phải chứng minh).
Dấu "=" xảy ra khi và chỉ khi các giá trị $\mathrm{a}=\mathrm{b}=\mathrm{c}$
Chứng minh rằng nếu a, b, c là độ dài ba cạnh của một tam giác có p là nửa chu vi thì $\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c} \leq \sqrt{3 p}$
Hướng dẫn giải
Áp dụng bất đẳng thức Bunhiacopxki có:
$\begin{aligned} & \text { 1. } \sqrt{p-a}+1 \cdot \sqrt{p-b}+1 \cdot \sqrt{p-c} \leq \sqrt{\left(1^2+1^2+1^2\right)(p-a+p-b+p-c)} \\ & \Leftrightarrow \sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c} \leq \sqrt{3(3 p-2 p)}=\sqrt{3 p} \text { (điều phải chứng minh) }\end{aligned}$
Dấu "=" xảy ra khi và chỉ khi $\frac{1}{p-a}=\frac{1}{p-b}=\frac{1}{p-c} \Leftrightarrow a=b=c$ hay tam giác là tam giác đều.
Xem thêm:
Tổng hợp lí thuyết về bất đẳng thức Cosi
Bảy hằng đẳng thức đáng nhớ trong Toán lớp 8
Trên đây là công thức của bất đẳng thức Bunhiacopxki thường gặp và nâng cao. Học là Giỏi mong rằng, nó sẽ gợi ý cho các bạn cách hệ thống kiến thức sáng tạo và đẹp theo cách của riêng mình, biến các công thức khô khan trở nên sinh động hơn, từ đó giúp chúng mình nhớ và áp dụng giải được các bài toán tính đạo hàm trong chương trình toán phổ thông nhé.
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Bí kíp chinh phục các hằng đẳng thức mở rộng
Thứ tư, 14/8/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Thể thơ song thất lục bát trong văn chương Việt Nam
Thứ ba, 28/5/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ ba, 11/3/2025 07:55 AM
Bí quyết ghi nhớ bảng nhân 4 qua các bài tập thú vị
Bảng nhân 4 là một trong những kiến thức quan trọng trong toán học tiểu học, giúp học sinh rèn luyện tư duy và kỹ năng tính nhẩm nhanh. Gia sư online Học là Giỏi sẽ giúp bạn nắm vững bảng nhân 4 trong bài viết để bạn áp dụng phép nhân đối với các bài tập một cách hiệu quả.
Thứ ba, 11/3/2025 06:54 AM
Học thuộc bảng nhân 3 chỉ trong vài phút
Bảng nhân 3 là một trong những bảng cửu chương quan trọng giúp chúng ta ghi nhớ phép nhân với số 3 dễ dàng. Trong bài viết dưới đây, gia sư online Học là Giỏi sẽ hướng dẫn chi tiết về bảng nhân 3 để bạn áp dụng phép nhân này hiệu quả nhé.
Thứ hai, 10/3/2025 09:32 AM
Bảng nhân 2 là gì? Các phép tính trong bảng nhân 2
Bảng nhân 2 giúp bạn tính nhanh và giải toán dễ dàng hơn cho phép nhân với số 2. Trong bài viết dưới đây, gia sư online Học là Giỏi sẽ cung cấp chi tiết về bảng nhân 2 để bạn có thể nắm vững phép nhân này nhé.
Thứ sáu, 7/3/2025 10:10 AM
Cách học bảng cửu chương nhân, chia nhanh chóng và hiệu quả
Bảng cửu chương là một công cụ tính toán giúp bạn giải quyết nhanh gọn mọi bài toán trong học tập và cuộc sống. Thành thạo bảng cửu chương hỗ trợ bạn tư duy logic, tính toán linh hoạt và áp dụng vào thực tế dễ dàng hơn. Gia sư online Học là Giỏi mang đến cho bạn bảng cửu chương chi tiết dưới đây để giúp việc ghi nhớ hay học thuộc trở nên dễ dàng và hiệu quả hơn.
Thứ tư, 12/2/2025 06:38 AM
Tổng hợp các dạng toán Vi-ét thi vào lớp 10 mới nhất
Hệ thức Vi-ét là một công cụ quan trọng giúp giải nhanh các bài toán về nghiệm của phương trình bậc hai. Việc nắm vững các dạng toán Vi-ét thi vào lớp 10 sẽ giúp học sinh nâng cao tư duy toán học để dễ dàng giải đề thi. Hôm nay cùng gia sư online Học là Giỏi sẽ hệ thống lại các phương pháp, đưa ra ví dụ cụ thể để giúp bạn làm chủ dạng toán này một cách hiệu quả.
Thứ ba, 26/11/2024 09:39 AM
Tứ giác nội tiếp là gì? Tính chất của tứ giác nội tiếp
Tứ giác nội tiếp là một trong những khái niệm quan trọng trong hình học lớp 9, đặc biệt khi tìm hiểu về các mối quan hệ giữa các điểm và đường tròn. Hãy cùng gia sư online Học là Giỏi khám phá tứ giác nội tiếp này là gì và chúng có các tính chất như thế nào nhé.