Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Bất đẳng thức Minkowski là một bất đẳng thức đặc biệt trong đại số tuyến tính được đặt theo tên của nhà toán học người Đức Hermann Minkowski, một công cụ hữu ích trong giải quyết các bài toán bất đẳng thức và bất phương trình. Học là Giỏi sẽ cùng các bạn tổng hợp các kiến thức về Bất đẳng thức Minkowski qua bài viết dưới đây.
Mục lục [Ẩn]
Với 2 dãy số thực: a1, a2,…, an và b1, b2,…, bn, ta có:
Đẳng thức xảy ra khi và chỉ khi:
Quy ước nếu mẫu số bằng 0 thì tử số cũng bằng 0.
Bất đẳng thức Minkowski là một loại bất đẳng thức trong đại số tuyến tính. Có hai dạng chính của bất đẳng thức Minkowski là dạng đẳng và dạng không đẳng.
Đối với hai dãy số thực dương $\mathrm{a}_1, \mathrm{a}_2, \ldots, \mathrm{a}_{\mathrm{n}}$ và $\mathrm{b}_1, \mathrm{~b}_2, \ldots, \mathrm{b}_{\mathrm{n}}$, ta có bất đẳng thức Minkowski dạng đẳng như sau:
$\sqrt{\sum_{i=1}^n\left(a_i+b_i\right)^p} \leq \sqrt{\sum_{i=1}^n a_i^p}+\sqrt{\sum_{i=1}^n b_i^p}$
Trong đó, $\mathrm{p}$ là một số thực dương. Bất đẳng thức này được gọi là dạng đẳng vì khi hai dãy số $\mathrm{a}_{\mathrm{i}}$ và $\mathrm{b}_{\mathrm{i}}$ giống nhau, ta có dấu bằng. Bất đẳng thức Minkowski dạng đẳng là một trường hợp đặc biệt của bất đẳng thức Minkowski dạng không đẳng.
Đối với hai dãy số thực dương $\mathrm{a}_1, \mathrm{a}_2, \ldots, \mathrm{a}_{\mathrm{n}}$ và $\mathrm{b}_1, \mathrm{~b}_2, \ldots, \mathrm{b}_{\mathrm{n}}$, ta có bất đẳng thức Minkowski dạng không đẳng như sau:
$\sum_{i=1}^n\left(a_i+b_i\right)^p \geq \sum_{i=1}^n a_i^p+\sum_{i=1}^n b_i^p$
Trong đó, p là một số thực dương. Bất đẳng thức này cho ta một quan hệ giữa tổng mũ của tổng hai số và tổng mũ của từng số. Đây là hai dạng chính của bất đẳng thức Minkowski được sử dụng trong các bài toán liên quan đến đại số tuyến tính và thống kê.
Bất đẳng thức Mincôpxki $: \sqrt{a^2+b^2}+\sqrt{c^2+d^2} \geq \sqrt{(a+c)^2+(b+d)^2}, \forall a, b, c, d \in R$ (1)
Chứng minh: $(1) \Leftrightarrow \sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)} \geq a c+b d$ (luôn đúng)
Như vậy áp dụng BĐT (1) để chứng minh bài 1 như sau:
$\mathrm{VT}=\sqrt{\left(x+\frac{y}{2}\right)^2+\left(\frac{\sqrt{3}}{2} y\right)^2}+\sqrt{\left(-x-\frac{z}{2}\right)^2+\left(\frac{\sqrt{3}}{2} z\right)^2} \geq \sqrt{\left(\frac{y}{2}-\frac{z}{2}\right)^2+\left(\frac{\sqrt{3}}{2} y+\frac{\sqrt{3}}{2} z\right)^2}=\mathrm{VP}$
- Nắm chắc các tính chất cơ bản của BĐT.
- Nắm vững các phương pháp chứng minh Bất đẳng thức cơ bản như: Cân bằng hệ số, biến đổi tương đương, làm trội, sử dụng BĐT cổ điển, quy nạp, phản chứng,…
- Đặc biệt luôn chú trọng vào ôn tập các kĩ thuật sử dụng BĐT AM-GM, Cauchy-Schwarz, luôn biết đặt và trả lời các câu hỏi như: khi nào áp dụng? điều kiện các biến là gì? dấu “=” xảy ra khi nào? nếu áp dụng thế dấu “=” có xảy ra không, tại sao lại thêm bớt như vậy,…
- Luôn bắt đầu với những bất đẳng thức cơ bản (điều này vô cùng quan trọng); học thuộc một số BĐT cơ bản có nhiều ứng dụng nhưng phải chú ý điều kiện áp dụng.
Xem thêm:
Tổng hợp lí thuyết về bất đẳng thức Cosi
Tổng hợp kiến thức về bất đẳng thức Bunhiacopxki
Trên đây là tóm tắt kiến thức về bất đẳng thức Mincopxki. Học là Giỏi mong rằng, nó sẽ gợi ý cho các bạn cách hệ thống kiến thức sáng tạo và đẹp theo cách của riêng mình, biến các công thức khô khan trở nên sinh động hơn, từ đó giúp chúng mình nhớ và áp dụng giải được các bài toán tính đạo hàm trong chương trình toán phổ thông nhé.
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Bí kíp chinh phục các hằng đẳng thức mở rộng
Thứ tư, 14/8/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Thể thơ song thất lục bát trong văn chương Việt Nam
Thứ ba, 28/5/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ sáu, 16/5/2025 09:20 AM
Tổng hợp đề ôn tập hè lớp 5 lên 6 môn toán có chọn lọc
Đối với các bạn học sinh chuẩn bị lên lớp 6, việc ôn tập hè lớp 5 lên 6 môn toán giúp nhớ lại chương trình học cũ, tự tin bước vào cấp học quan trọng tiếp theo. Hôm nay gia sư online Học là Giỏi cung cấp kho đề ôn luyện đa dạng để hỗ trợ các em củng cố kiến thức vững chắc trong quá trình học tập nhé.
Thứ tư, 7/5/2025 08:59 AM
Kinh nghiệm chọn gia sư toán lớp 11 tại Hà Nội phù hợp nhất
Nhiều học sinh luôn gặp khó khăn với chương trình toán nâng cao và thiếu các phương pháp học hiệu quả khi vào lớp 11. Vì vậy, việc tìm gia sư toán lớp 11 tại Hà Nội trở thành giải pháp tối ưu giúp học sinh nắm chắc kiến thức và cải thiện thành tích học tập. Gia sư online Học là Giỏi sẽ giúp bạn hiểu cách lựa chọn gia sư toán lớp 11 tại Hà Nội sao cho phù hợp nhất.
Thứ tư, 7/5/2025 07:52 AM
Tại sao cần tìm gia sư toán lớp 10 tại Hà Nội?
Lựa chọn gia sư toán lớp 10 tại Hà Nội giúp con kịp thời tháo gỡ những vướng mắc trong quá trình học, đồng thời tạo tiền đề vững chắc để con tự tin trước những thử thách học tập. Trong bài viết dưới đây, Gia sư online Học là Giỏi sẽ chỉ cho các bậc phụ huynh cách tìm gia sư toán lớp 10 tại Hà Nội sao cho phù hợp nhất nhé.
Thứ hai, 5/5/2025 10:27 AM
Làm thế nào để chọn gia sư toán lớp 7 tại Hà Nội?
Với học sinh lớp 7, toán học là nền tảng của các môn học liên quan đến tính toán và cũng là bước đệm cho những kỳ thi quan trọng sau này. Gia sư online Học là Giỏi sẽ chia sẻ cách chọn gia sư toán lớp 7 tại Hà Nội trong bài viết dưới đây nhé.
Thứ hai, 28/4/2025 06:51 AM
Bí quyết cách học giỏi toán mọi học sinh cần biết
Toán học luôn là một môn học quan trọng trong chương trình giáo dục và cả trong cuộc sống hàng ngày. Tuy nhiên, không phải ai cũng dễ dàng nắm vững được các kiến thức và kỹ năng cần thiết để học giỏi môn toán. Hãy cùng gia sư online Học là Giỏi cung cấp những cách học giỏi toán đơn giản, giúp bạn tự tin và thành công trong việc học tập.
Thứ sáu, 25/4/2025 07:16 AM
Mẹo học bảng nhân 5 cực dễ hiểu cho học sinh tiểu học
Bảng nhân 5 là một phần không thể thiếu trong hệ thống bảng cửu chương hỗ trợ học sinh ghi nhớ và vận dụng phép nhân với số 5 một cách nhanh chóng. Hôm nay gia sư online Học là Giỏi sẽ cùng bạn khám phá chi tiết bảng nhân 5 nhé.