Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Định lý Thales là một định lý trong hình học, không chỉ áp dụng trong toán học lớp 8 mà còn trong nhiều cấp độ khác. Định lý này nói về mối quan hệ giữa các đường thẳng song song trong tam giác. Trong bài viết này, Học là Giỏi sẽ cùng các bạn tìm hiểu về định lý Talet Và hệ quả của định lý Ta lét.
Mục lục [Ẩn]
- Tỉ số của hai đoạn thẳng là tỉ số độ dài của chúng theo cùng một đơn vị đo.
- Tỉ số của hai đoạn thẳng không phụ thuộc vào cách chọn đơn vị đo.
Chú ý: Tỉ số của hai đoạn thẳng không phụ thuộc vào các chọn đơn vị đo
Định nghĩa: Hai đoạn thẳng AB và CD gọi là tỉ lệ với hai đoạn thẳng A'B' và C'D' nếu có tỉ lệ thức.
Công thức tổng quát: $\frac{A B}{C D}=\frac{A^{\prime} B^{\prime}}{C^{\prime} D^{\prime}}$ hay $\frac{A B}{A^{\prime} B^{\prime}}=\frac{C D}{C^{\prime} D^{\prime}}$
Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lai thì nó định ra trên hai cạnh ấy những đoạn thẳng tương ứng tỉ lệ.
Ví dụ:

Ta có: $\triangle A B C, D E / / B C \Rightarrow \frac{A D}{A B}=\frac{A E}{A C}$ và $\frac{A D}{D B}=\frac{A E}{E C}$
Định lý Talet đảo khẳng định rằng nếu một đường thẳng cắt hai cạnh của tam giác và đoạn thẳng được định ra trên hai cạnh này có tỷ số độ dài tương ứng, thì đường thẳng đó sẽ song song với cạnh còn lại của tam giác.
Hệ quả đầu tiên của định lí Ta lét trong tam giác đã được phát biểu như sau:
Khi một đường thẳng song song với một cạnh của một tam giác có sẵn, đồng thời cắt 2 cạnh còn lại thì sẽ tạo ra được một tam giác mới với ba cạnh tỉ lệ với ba cạnh của tam giác đã được cho trước.
Chú ý: Hệ quả 1 vẫn đúng đối với trường hợp có một đường thẳng a song song với 1 cạnh của tam giác đã cho và cắt 2 cạnh còn lại của tam giác khi kéo dài.
Ta có hệ quả 2 của định lý Ta lét như sau:
Khi một đường thẳng cắt ngang 2 cạnh của một tam giác đã cho trước và song song với cạnh còn lại thì sẽ tạo ra được 1 tam giác mới và tam giác này đồng dạng với tam giác đã được cho trước.
Hệ quả 3 của định lí Ta lét trong tam giác còn được biết đến là một định lý Ta lét mở rộng. Ta phát biểu định lý mở rộng như sau:
Khi ba đường thẳng đồng quy thì sẽ chắn trên 2 đường thẳng song song những cặp đoạn thẳng tỉ lệ.
Bên cạnh định lí Ta lét trong tam giác, chúng ta còn có thể áp dụng định lý Ta lét trong hình thang.
Khi trong một hình thang, có một đường thẳng song song cùng 2 cạnh đáy, đồng thời cắt 2 cạnh bên của hình thang đó thì sẽ định ra tại 2 cạnh bên đó những đoạn thẳng có tỷ lệ tương ứng với nhau.
Ví dụ:

Giả sử chúng ta có một hình thang EFGH với hai đáy EF và GH, và điểm N thuộc đoạn FG và điểm M thuộc đoạn EH. Nếu đường thẳng MN song song với hai đáy EF và HG và cắt hai cạnh bên FG và EH lần lượt tại các điểm M và N, thì tỷ số giữa các đoạn thẳng tương ứng trên các đáy là bằng nhau: $\frac{F N}{F G}=\frac{E M}{E H}$
Ngược lại, nếu tỷ số $\frac{F N}{F G}=\frac{E M}{E H}$, thì đường thẳng MN sẽ song song với đáy EF và HG của hình thang.
Để nắm rõ kiến thức cơ bản trên thì phải luyện tập thường xuyên với các dạng bài tập. Dưới đây là các dạng cơ bản và nâng cao mà bạn có thể tham khảo.
Bài 1: Đoạn thẳng AB gấp 5 lần đoạn thẳng CD, đoạn thẳng A'B' gấp 7 lần đoạn thẳng CD.
a) Tính tỉ số của hai đoạn thẳng AB và A'B'.
b) Cho biết đoạn thẳng MN = 55 cm và M'N' = 77 cm. Hỏi hai đoạn thẳng AB và A'B' có tỉ lệ với đoạn thẳng MN và M'N' không?
Lời giải:
a)
b)
Vậy hai đoạn thẳng AB và A'B' tỉ lệ với đoạn thẳng MN và M'N'.
Bài 2:
Tìm x trong các trường hợp sau:

Áp dụng định lý Thales trong các tam giác, ta có:
a) Suy ra x = 2.
b) Suy ra x = 6,8.
Bài 3: Cho tam giác ABC có AB = 6 cm, AC = 8 cm và BC = 10 cm. Lấy điểm B' trên AB sao cho AB' = 2 cm. Qua B' vẽ đường thẳng song song với BC và cắt AC tại C'.
a) Tính AC'.
b) Qua C' vẽ đường thẳng song song với AB và cắt BC tại D. Tính BD, B'C'.
c) Tính và so sánh các tỉ số: và

a) Xét tam giác ABC có B'C' // BC, nên theo định lí Thalès, ta có:
Vậy AC' = .
b) Xét tam giác ABC có C'D // AB, nên theo định lí Thalès, ta có:
Vậy BD = .
c) Ta có:
Vậy .
Xem thêm:
Cách tính diện tích hình tam giác và một số lưu ý
Trên đây là tổng hợp lí thuyết về định lý Talet trong chương trình Toán lớp 8. Học là Giỏi mong rằng, nó sẽ gợi ý cho các bạn cách hệ thống kiến thức sáng tạo và đẹp theo cách của riêng mình, biến các công thức khô khan trở nên sinh động hơn, từ đó giúp chúng mình nhớ và áp dụng để giải được các bài toán liên quan.
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
Đánh giá về trường THPT Chuyên Nguyễn Huệ Hà Nội 2025
Thứ tư, 5/11/2025
Các trường chuyên ở Hà Nội và những thông tin cần biết
Thứ ba, 4/11/2025
20+ trường THPT ở Hà Nội có chất lượng đào tạo tốt nhất 2025
Thứ năm, 30/10/2025
STEM là gì? Lợi ích và ứng dụng trong giáo dục hiện đại
Thứ ba, 12/8/2025
Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ năm, 23/10/2025 09:44 AM
Đáp án, đề thi giữa kì 1 toán 9 Kết nối tri thức 2025-2026
Trong quá trình ôn tập và chuẩn bị cho kỳ thi, việc tham khảo Đề thi giữa kì 1 Toán 9 Kết nối tri thức là vô cùng cần thiết giúp học sinh rèn luyện kỹ năng làm bài. Bộ đề thi được Học là Giỏi tổng hợp và biên soạn bám sát chương trình mới, giúp các em làm quen với cấu trúc đề, dạng câu hỏi thường gặp và cách phân bổ thời gian hợp lý trong phòng thi.
Thứ ba, 21/10/2025 08:25 AM
Một số bài toán về đại lượng tỉ lệ thuận kèm lời giải
Trong chương trình Toán 7, đại lượng tỉ lệ thuận là một nội dung quan trọng giúp học sinh hiểu rõ mối quan hệ giữa hai yếu tố thay đổi cùng chiều. Học sinh cần nắm được một số bài toán về đại lượng tỉ lệ thuận để giải được đa dạng các dạng bài thường xuất hiện trong các đề thi, đề kiểm tra. Hãy cùng Học là Giỏi tìm hiểu một số bài toán về đại lượng tỉ lệ thuận qua bài viết dưới đây!
Thứ ba, 14/10/2025 07:19 AM
Tổng hợp kiến thức Toán lớp 5 đầy đủ nhất
Chương trình Toán lớp 5 là bước chuyển quan trọng tạo nền tảng cho môn Toán ở bậc THCS. Trong chương trình Toán 5, học sinh được làm quen với nhiều dạng kiến thức mới như phân số, số thập phân, tỉ số, tỉ lệ, các bài toán thực tế và hình khối. Học là Giỏi đã tổng hợp các kiến thức trọng tâm của chương trình Toán lớp 5 dưới dạng trực quan, giúp học sinh dễ theo dõi và ôn tập. Hãy cùng ôn tập về phần kiến thức này qua bài tổng hợp kiến thức Toán lớp 5 dưới đây.
Thứ ba, 14/10/2025 03:10 AM
Tổng hợp kiến thức Toán 3 quan trọng
Toán lớp 3 là môn học cung cấp nền tảng từ những kiến thức cơ bản nhất, giúp học sinh rèn luyện tư duy và khả năng tính toán. Để học tốt, các con cần ghi nhớ và hiểu rõ những công thức từ bảng nhân chia, quy tắc tính toán, lý thuyết cơ bản về hình học và giải được các bài toán có lời văn. Bộ tổng hợp kiến thức Toán 3 quan trọng dưới đây có tổng hợp đầy đủ các công thức và nội dung cần nhớ với các quy tắc và ví dụ minh họa dễ hiểu, giúp học sinh dễ dàng hệ thống kiến thức và nắm được các nội dung cốt lõi.
Thứ hai, 13/10/2025 10:28 AM
Tổng hợp kiến thức Toán lớp 4 dễ hiểu nhất
Toán lớp 4 là cơ sở kiến thức quan trọng giúp học sinh củng cố nền tảng tư duy và các kỹ năng tính toán, bổ trợ cho việc học các kiến thức Toán học phức tạp hơn. Tuy nhiên, với nhiều kiến thức và dạng bài khác nhau, các em có thể gặp khó khăn trong việc ghi nhớ các công thức. Hiểu được điều đó, Học là Giỏi đã tổng hợp toàn bộ kiến thức trọng tâm Toán lớp 4 qua những bảng tóm tắt ngắn gọn, giúp học sinh có thể học nhanh, nhớ lâu và áp dụng hiệu quả các công thức Toán 4 vào giải bài tập. Hãy cùng tìm hiểu tất cả kiến thức Toán 4 qua bài viết dưới đây!
Thứ năm, 28/8/2025 04:23 AM
Tia là gì? Khái niệm cơ bản và tính chất trong hình học
Trong hình học, một trong những khái niệm mà học sinh cần nắm vững chính là tia. Nhiều bạn thường đặt câu hỏi: tia là gì và cách phân biệt nó với đoạn thẳng hay đường thẳng như thế nào? Học là Giỏi sẽ giúp bạn tìm hiểu chi tiết về tia là gì, các tính chất quan trọng và những bài tập minh họa dễ hiểu qua bài viết dưới đây nhé.