Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức

Tổng hợp kiến thức về định lý Talet trong Toán lớp 8

schedule.svg

Thứ tư, 22/5/2024 02:31 AM

Tác giả: Admin Hoclagioi

Định lý Thales là một định lý trong hình học, không chỉ áp dụng trong toán học lớp 8 mà còn trong nhiều cấp độ khác. Định lý này nói về mối quan hệ giữa các đường thẳng song song trong tam giác. Trong bài viết này, Học là Giỏi sẽ cùng các bạn tìm hiểu về định lý Talet Và hệ quả của định lý Ta lét.

Mục lục [Ẩn]

Định lý Talet trong tam giác

Tỉ số của hai đoạn thẳng

- Tỉ số của hai đoạn thẳng là tỉ số độ dài của chúng theo cùng một đơn vị đo.

- Tỉ số của hai đoạn thẳng không phụ thuộc vào cách chọn đơn vị đo.

Chú ý: Tỉ số của hai đoạn thẳng không phụ thuộc vào các chọn đơn vị đo

Đoạn thẳng tỉ lệ

Định nghĩa: Hai đoạn thẳng AB và CD gọi là tỉ lệ với hai đoạn thẳng A'B' và C'D' nếu có tỉ lệ thức.

Công thức tổng quát: $\frac{A B}{C D}=\frac{A^{\prime} B^{\prime}}{C^{\prime} D^{\prime}}$ hay $\frac{A B}{A^{\prime} B^{\prime}}=\frac{C D}{C^{\prime} D^{\prime}}$

Định lí Talet trong tam giác

Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lai thì nó định ra trên hai cạnh ấy những đoạn thẳng tương ứng tỉ lệ.

Ví dụ:
 Định lí Talet trong tam giác

Ta có: $\triangle A B C, D E / / B C \Rightarrow \frac{A D}{A B}=\frac{A E}{A C}$ và $\frac{A D}{D B}=\frac{A E}{E C}$

Định lí Talet đảo

Định lý Talet đảo khẳng định rằng nếu một đường thẳng cắt hai cạnh của tam giác và đoạn thẳng được định ra trên hai cạnh này có tỷ số độ dài tương ứng, thì đường thẳng đó sẽ song song với cạnh còn lại của tam giác.

Hệ quả của định lí Talet

Hệ quả 1

Hệ quả đầu tiên của định lí Ta lét trong tam giác đã được phát biểu như sau: 

Khi một đường thẳng song song với một cạnh của một tam giác có sẵn, đồng thời cắt 2 cạnh còn lại thì sẽ tạo ra được một tam giác mới với ba cạnh tỉ lệ với ba cạnh của tam giác đã được cho trước.

Chú ý: Hệ quả 1 vẫn đúng đối với trường hợp có một đường thẳng a song song với 1 cạnh của tam giác đã cho và cắt 2 cạnh còn lại của tam giác khi kéo dài.

Hệ quả 2

Ta có hệ quả 2 của định lý Ta lét như sau: 

Khi một đường thẳng cắt ngang 2 cạnh của một tam giác đã cho trước và song song với cạnh còn lại thì sẽ tạo ra được 1 tam giác mới và tam giác này đồng dạng với tam giác đã được cho trước.

Hệ quả 3

Hệ quả 3 của định lí Ta lét trong tam giác còn được biết đến là một định lý Ta lét mở rộng. Ta phát biểu định lý mở rộng như sau: 

Khi ba đường thẳng đồng quy thì sẽ chắn trên 2 đường thẳng song song những cặp đoạn thẳng tỉ lệ.

Định lý Talet trong hình thang

Bên cạnh định lí Ta lét trong tam giác, chúng ta còn có thể áp dụng định lý Ta lét trong hình thang. 

Khi trong một hình thang, có một đường thẳng song song cùng 2 cạnh đáy, đồng thời cắt 2 cạnh bên của hình thang đó thì sẽ định ra tại 2 cạnh bên đó những đoạn thẳng có tỷ lệ tương ứng với nhau.

Ví dụ: 

Định lý Talet trong hình thang

Giả sử chúng ta có một hình thang EFGH với hai đáy EF và GH, và điểm N thuộc đoạn FG và điểm M  thuộc đoạn EH. Nếu đường thẳng MN song song với hai đáy EF và HG và cắt hai cạnh bên FG và EH lần lượt tại các điểm M và N, thì tỷ số giữa các đoạn thẳng tương ứng trên các đáy là bằng nhau: $\frac{F N}{F G}=\frac{E M}{E H}$

Ngược lại, nếu tỷ số $\frac{F N}{F G}=\frac{E M}{E H}$, thì đường thẳng MN sẽ song song với đáy EF và HG của hình thang.

Bài tập về định lý Ta lét

Để nắm rõ kiến thức cơ bản trên thì phải luyện tập thường xuyên với các dạng bài tập. Dưới đây là các dạng cơ bản và nâng cao mà bạn có thể tham khảo.

Bài tập cơ bản

Bài 1: Đoạn thẳng AB gấp 5 lần đoạn thẳng CD, đoạn thẳng A'B' gấp 7 lần đoạn thẳng CD.

a) Tính tỉ số của hai đoạn thẳng AB và A'B'.

b) Cho biết đoạn thẳng MN = 55 cm và M'N' = 77 cm. Hỏi hai đoạn thẳng AB và A'B' có tỉ lệ với đoạn thẳng MN và M'N' không?

Lời giải:

a) ABA'B'=5.CD7.CD=57

b) MNM'N'=5577=57=ABA'B'

Vậy hai đoạn thẳng AB và A'B' tỉ lệ với đoạn thẳng MN và M'N'.

Bài 2: 

Tìm x trong các trường hợp sau:

Tìm x trong các trường hợp sau:

Áp dụng định lý Thales trong các tam giác, ta có:

a) AMMB=ANNCx5=410  Suy ra x = 2.

b) KNKL=KOKM4x=55+3,5  Suy ra x = 6,8.

Bài tập nâng cao

Bài 3Cho tam giác ABC có AB = 6 cm, AC = 8 cm và BC = 10 cm. Lấy điểm B' trên AB sao cho AB' = 2 cm. Qua B' vẽ đường thẳng song song với BC và cắt AC tại C'.

a) Tính AC'. 

b) Qua C' vẽ đường thẳng song song với AB và cắt BC tại D. Tính BD, B'C'. 

c) Tính và so sánh các tỉ số: AB'AB,AC'AC và B'C'BC

Cho tam giác ABC có AB = 6 cm, AC = 8 cm và BC = 10 cm. Lấy điểm B' trên AB sao cho AB' = 2 cm. Qua B' vẽ đường thẳng song song với BC và cắt AC tại C'.


a) Xét tam giác ABC có B'C' // BC, nên theo định lí Thalès, ta có:

AB'AB=AC'AC  26= AC'8  AC'=83

Vậy AC' = 83.

b) Xét tam giác ABC có C'D // AB, nên theo định lí Thalès, ta có:

BDBC=AC'AC  BD10= 838  BD=103

Vậy BD = 103.

c) Ta có: AB'AB=26 = 13; AC'AC = 838 = 13;  B'C'BC=10310=13

AB'AB=AC'AC = B'C'BC= 13

Vậy AB'AB=AC'AC = B'C'BC.

Xem thêm:

Định lý cosin

Cách tính diện tích hình tam giác và một số lưu ý

Kết luận

Trên đây là tổng hợp lí thuyết về định lý Talet trong chương trình Toán lớp 8.  Học là Giỏi mong rằng, nó sẽ gợi ý cho các bạn cách hệ thống kiến thức sáng tạo và đẹp theo cách của riêng mình, biến các công thức khô khan trở nên sinh động hơn, từ đó giúp chúng mình nhớ và áp dụng để giải được các bài toán liên quan. 

Chủ đề:

Đăng ký học thử ngay hôm nay

Để con học sớm - Ôn sâu và nhận ưu đãi học phí!

Bài viết liên quan

Cách so sánh phân số chính xác và dễ hiểu cho học sinh
schedule

Thứ năm, 3/7/2025 09:37 AM

Cách so sánh phân số chính xác và dễ hiểu cho học sinh

Trong chương trình toán tiểu học, so sánh phân số là kỹ năng nền tảng giúp học sinh nhận biết trong các đơn vị chia không đều. Trong bài viết này, Học là Giỏi sẽ đồng hành cùng bạn khám phá các phương pháp so sánh phân số cùng với những bài tập ứng dụng đa dạng để bạn luyện tập hiệu quả và tự tin hơn khi làm bài nhé.

Phân số bằng nhau là gì? Cách nhận biết đơn giản nhất
schedule

Thứ năm, 3/7/2025 03:24 AM

Phân số bằng nhau là gì? Cách nhận biết đơn giản nhất

Trong chương trình Toán lớp 4, phân số bằng nhau là một trong những nội dung quan trọng giúp học sinh hiểu sâu hơn về mối quan hệ giữa các phần. Học là Giỏi sẽ cùng bạn tìm hiểu chi tiết kiến thức về dạng phân số này trong bài viết dưới đây nhé.

Tử số và mẫu số là gì? Kiến thức nền tảng về phân số
schedule

Thứ tư, 2/7/2025 03:40 AM

Tử số và mẫu số là gì? Kiến thức nền tảng về phân số

Khi học về phân số, chắc hẳn bạn đã từng thắc mắc: Tử số và mẫu số là gì? Đây là khái niệm xuất hiện thường xuyên trong chương trình Toán tiểu học. Học là Giỏi sẽ cung cấp chi tiết kiến thức trong bài viết sau giúp bạn hiểu rõ tử số và mẫu số trong toán học nhé.

Các phương pháp quy đồng mẫu số các phân số
schedule

Thứ ba, 1/7/2025 08:07 AM

Các phương pháp quy đồng mẫu số các phân số

Trong chương trình toán tiểu học, phân số luôn là phần kiến thức khiến nhiều học sinh cảm thấy khó tiếp cận. Đặc biệt, việc quy đồng mẫu số thường gây nhầm lẫn nếu không được hướng dẫn cụ thể. Học là Giỏi sẽ giúp bạn giải đáp tất cả những thắc mắc về quy đồng mẫu số các phân số một cách dễ hiểu và chi tiết.

Đáp án, đề thi môn Toán vào 10 tỉnh Lâm Đồng 2025
schedule

Thứ ba, 17/6/2025 04:12 AM

Đáp án, đề thi môn Toán vào 10 tỉnh Lâm Đồng 2025

Học là Giỏi tổng hợp trọn bộ đáp án, đề thi môn Toán vào 10 tỉnh Lâm Đồng 2025 nhằm hỗ trợ học sinh thuận tiện trong việc so sánh kết quả và tự đánh giá năng lực làm bài.

Đáp án, đề thi môn Toán THPT Quốc gia 2025
schedule

Thứ sáu, 13/6/2025 07:11 AM

Đáp án, đề thi môn Toán THPT Quốc gia 2025

Bài viết cập nhật nhanh chóng và chính xác đề thi cùng đáp án giúp thí sinh so sánh kết quả và định hướng các nguyện vọng phù hợp. Học là Giỏi cung cấp đề thi chính thức môn Toán THPT Quốc gia 2025 được thi vào chiều ngày 26/06/2025 kèm đáp án chi tiết từng mã đề, hỗ trợ thí sinh tra cứu dễ dàng và tiện lợi.

message.svg zalo.png