Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Trong hình học tam giác, định lý cosin là một trong những định lý quan trọng nhất. Định lý này cho phép chúng ta tính toán một cạnh của tam giác khi biết hai cạnh còn lại và góc xen giữa chúng. Sau đây là kiến thức về định lý cosin mà Học là Giỏi đã tổng hợp lại.
Mục lục [Ẩn]
Định lý cosin được phát biểu như sau: Trong một tam giác bất kỳ, bình phương một cạnh bằng tổng bình phương của hai cạnh còn lại trừ đi hai lần tích của hai cạnh đó nhân với cosin của góc xen ở giữa chúng.
Từ định lý hàm số Cosin, chúng ta có thể dễ dàng suy ra các biểu thức tính giá trị của cosA, cosB, và cosC theo ba cạnh của tam giác ABC như sau:
Chú ý:
Hệ quả định lý hàm cosin là những định lý được suy ra từ định lý hàm cosin. Chúng có thể được sử dụng để giải các bài toán tam giác một cách nhanh chóng và dễ dàng.
Một số hệ quả của định lý hàm cosin được diễn giải bằng lời, như sau:
Cosin của một góc trong tam giác bất kì bằng tỷ số bình phương của cạnh đối diện với góc đó chia cho tổng bình phương của hai cạnh còn lại.
Bình phương của một cạnh trong tam giác bất kì bằng tổng bình phương của hai cạnh còn lại trừ đi hai lần tích của hai cạnh đó nhân với cosin của góc đối diện với cạnh đó.
Nếu biết độ dài của ba cạnh của một tam giác, ta có thể tính được số đo của các góc trong tam giác đó.
Nếu biết độ dài của hai cạnh và góc xen giữa chúng, ta có thể tính được độ dài cạnh còn lại của tam giác đó.
Nếu biết độ dài của một cạnh và góc đối diện với cạnh đó, ta có thể tính được độ dài của hai cạnh còn lại của tam giác đó.
Để sử dụng hệ quả định lý hàm cosin, ta cần nắm vững định lý hàm cosin và các hệ quả của định lý này. Sau đó, ta cần xác định xem hệ quả nào phù hợp với bài toán cần giải.
Tính độ dài cạnh tam giác: Định lý cosin cho phép chúng ta tính toán độ dài của một cạnh của tam giác khi biết các độ dài của hai cạnh khác và góc giữa chúng. Điều này rất hữu ích trong hình học và các vấn đề liên quan đến đo đạc.
Tính toán các góc trong tam giác: Định lý cosin cũng cho phép chúng ta tính toán các góc trong tam giác khi biết độ dài của ba cạnh. Điều này có thể hữu ích trong việc xác định hình dạng và hướng của tam giác.
Xác định tích vô hướng: Định lý cosin cũng được sử dụng trong việc tính toán tích vô hướng của hai vectơ trong không gian Euclid. Điều này có ứng dụng rộng rãi trong đại số tuyến tính và trong các lĩnh vực như vật lý và công nghệ.
Giải quyết các vấn đề vận động: Trong vật lý và kỹ thuật, định lý cosin được sử dụng để giải quyết các vấn đề liên quan đến chuyển động và lực tác động lên các đối tượng. Nó giúp tính toán các thành phần của lực hoặc vận tốc trong các hướng khác nhau.
Ứng dụng trong thiết kế và xây dựng: Định lý cosin cũng được sử dụng trong các ứng dụng thiết kế và xây dựng, chẳng hạn như xác định các lực căng trong các cấu trúc như cầu, tòa nhà, và thiết bị kỹ thuật.
Xác định khoảng cách giữa các điểm: Định lý cosin có thể được sử dụng để tính khoảng cách giữa các điểm trong không gian dựa trên tọa độ của chúng.
Bài 1:
Cho tam giác DEF, biết . Tính cạnh .
Bài 2:
Một tam giác MNP có . Tính độ dài cạnh .
Bài 3:
Tính khoảng cách giữa hai điểm và ở hai bên bờ hồ. Biết từ điểm C, C cách A và B lần lượt 500m và 600m, góc giữa hai đoạn CA và CB là 70∘.
Bài 4:
Cho tam giác ABC, biết . Tính các góc và cạnh còn lại của tam giác.
Bài 1:
Sử dụng định lí côsin:
Đáp án:
Bài 2:
Sử dụng định lí côsin:
.
Đáp án: .
Bài 3:
Sử dụng định lí côsin:
Đáp án: .
Bài 4:
Tính BC:
.
Tính các góc B, C:
Sử dụng hệ quả của định lí côsin:
, suy ra
Đáp án:
, ,
Xem thêm:
Tổng hợp lí thuyết về bất đẳng thức Cosi
Tổng hợp kiến thức về bất đẳng thức Bunhiacopxki
Trên đây là các công thức định lý cosin thường gặp và nâng cao. Học là Giỏi mong rằng, nó sẽ gợi ý cho các bạn cách hệ thống kiến thức sáng tạo và đẹp theo cách của riêng mình, biến các công thức khô khan trở nên sinh động hơn, từ đó giúp chúng mình nhớ và áp dụng giải được các bài tập trong chương trình toán phổ thông nhé.
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Bí kíp chinh phục các hằng đẳng thức mở rộng
Thứ tư, 14/8/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Thể thơ song thất lục bát trong văn chương Việt Nam
Thứ ba, 28/5/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ ba, 11/3/2025 07:55 AM
Bí quyết ghi nhớ bảng nhân 4 qua các bài tập thú vị
Bảng nhân 4 là một trong những kiến thức quan trọng trong toán học tiểu học, giúp học sinh rèn luyện tư duy và kỹ năng tính nhẩm nhanh. Gia sư online Học là Giỏi sẽ giúp bạn nắm vững bảng nhân 4 trong bài viết để bạn áp dụng phép nhân đối với các bài tập một cách hiệu quả.
Thứ ba, 11/3/2025 06:54 AM
Học thuộc bảng nhân 3 chỉ trong vài phút
Bảng nhân 3 là một trong những bảng cửu chương quan trọng giúp chúng ta ghi nhớ phép nhân với số 3 dễ dàng. Trong bài viết dưới đây, gia sư online Học là Giỏi sẽ hướng dẫn chi tiết về bảng nhân 3 để bạn áp dụng phép nhân này hiệu quả nhé.
Thứ hai, 10/3/2025 09:32 AM
Bảng nhân 2 là gì? Các phép tính trong bảng nhân 2
Bảng nhân 2 giúp bạn tính nhanh và giải toán dễ dàng hơn cho phép nhân với số 2. Trong bài viết dưới đây, gia sư online Học là Giỏi sẽ cung cấp chi tiết về bảng nhân 2 để bạn có thể nắm vững phép nhân này nhé.
Thứ sáu, 7/3/2025 10:10 AM
Cách học bảng cửu chương nhân, chia nhanh chóng và hiệu quả
Bảng cửu chương là một công cụ tính toán giúp bạn giải quyết nhanh gọn mọi bài toán trong học tập và cuộc sống. Thành thạo bảng cửu chương hỗ trợ bạn tư duy logic, tính toán linh hoạt và áp dụng vào thực tế dễ dàng hơn. Gia sư online Học là Giỏi mang đến cho bạn bảng cửu chương chi tiết dưới đây để giúp việc ghi nhớ hay học thuộc trở nên dễ dàng và hiệu quả hơn.
Thứ tư, 12/2/2025 06:38 AM
Tổng hợp các dạng toán Vi-ét thi vào lớp 10 mới nhất
Hệ thức Vi-ét là một công cụ quan trọng giúp giải nhanh các bài toán về nghiệm của phương trình bậc hai. Việc nắm vững các dạng toán Vi-ét thi vào lớp 10 sẽ giúp học sinh nâng cao tư duy toán học để dễ dàng giải đề thi. Hôm nay cùng gia sư online Học là Giỏi sẽ hệ thống lại các phương pháp, đưa ra ví dụ cụ thể để giúp bạn làm chủ dạng toán này một cách hiệu quả.
Thứ ba, 26/11/2024 09:39 AM
Tứ giác nội tiếp là gì? Tính chất của tứ giác nội tiếp
Tứ giác nội tiếp là một trong những khái niệm quan trọng trong hình học lớp 9, đặc biệt khi tìm hiểu về các mối quan hệ giữa các điểm và đường tròn. Hãy cùng gia sư online Học là Giỏi khám phá tứ giác nội tiếp này là gì và chúng có các tính chất như thế nào nhé.