Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Trong hình học, tính chất của hai tiếp tuyến cắt nhau mang lại sự cân bằng về độ dài và góc độ trong việc giải toán. Tính chất này giúp đơn giản hóa các bài toán phức tạp, hỗ trợ giải quyết hiệu quả từ những bài cơ bản cho đến nâng cao. Cùng gia sư online Học là Giỏi khám phá các tính chất đặc trưng của dạng toán này nhé.
Mục lục [Ẩn]
Nếu hai tiếp tuyến của một đường tròn gặp nhau tại một điểm, thì:
- Điểm giao đó sẽ cách đều hai điểm tiếp xúc trên đường tròn.
- Đường thẳng nối từ điểm giao đến tâm của đường tròn là phân giác của góc tạo bởi hai tiếp tuyến.
- Đường thẳng nối từ tâm đến điểm giao là phân giác của góc tạo bởi hai bán kính đi qua hai điểm tiếp xúc.
Cụ thể, cho đường tròn (O) với B và C là hai điểm nằm trên (O).
Nếu hai tiếp tuyến của (O) tại B và C giao nhau tại điểm A, thì:
+ AB=AC
+ Đường thẳng OA là phân giác của góc
+ Đường thẳng AO là phân giác của góc
Tính chất hai tiếp tuyến cắt nhau sẽ chứa nhiều ứng dụng thực tiễn trong các bài toán hình. Dưới đây là 1 số ứng dụng phổ biến:
Giả sử bạn có một điểm ngoài đường tròn, từ đó bạn vẽ hai tiếp tuyến tiếp xúc tại hai điểm khác nhau trên đường tròn. Khi đó, điểm ngoài này cách đều hai điểm tiếp xúc, nghĩa là các đoạn thẳng từ điểm này đến mỗi điểm tiếp xúc có độ dài bằng nhau. Sự cân bằng này là lý do mà các đoạn thẳng trở nên bằng nhau – một minh chứng đơn giản nhưng hữu ích.
Với hai tiếp tuyến cắt nhau tại một điểm, nếu nối điểm đó với tâm đường tròn, ta sẽ thấy rằng đường nối này chia đôi góc tạo bởi hai tiếp tuyến. Khi cần chứng minh các góc bằng nhau trong các bài toán phức tạp hơn, sử dụng tính chất này giúp rút ngắn lời giải.
Tính toán chính xác là một phần không thể thiếu trong hình học, và với tính chất hai tiếp tuyến cắt nhau, việc xác định chiều dài các đoạn thẳng hay đo đạc các góc cũng trở nên dễ dàng hơn. Từ việc biết được khoảng cách bằng nhau giữa điểm cắt và các tiếp điểm, chúng ta có thể tính toán nhanh chóng và chính xác các đoạn thẳng hoặc góc khác liên quan.
Khi hai tiếp tuyến cắt nhau, tia nối từ tâm đến điểm cắt trở thành phân giác của góc tạo bởi hai tiếp tuyến, đồng thời cũng là phân giác của góc tạo bởi hai bán kính đi qua hai tiếp điểm. Với tính chất này, chúng ta xác định được vị trí tương đối của các đường thẳng trong bài toán, biết được đâu là những đường song song, đâu là góc đối đỉnh hay thậm chí là xác định xem hai đường có vuông góc với nhau hay không.
Hai dạng đường tròn này chúng ta sẽ được học trong các bài tập nâng cao hơn của đường tròn.
Trong một tam giác, đường tròn tiếp xúc với cả ba cạnh được gọi là đường tròn nội tiếp tam giác, còn tam giác được gọi là ngoại tiếp cho đường tròn đó.
Tâm của đường tròn nội tiếp chính là điểm giao của các đường phân giác của ba góc trong tam giác. Đây là điểm đặc biệt giúp xác định bán kính đường tròn nội tiếp mà chỉ tiếp xúc bên trong tam giác tại ba cạnh.
Đường tròn bàng tiếp của tam giác là đường tròn tiếp xúc với một cạnh của tam giác và tiếp xúc với phần kéo dài của hai cạnh còn lại.
Điểm tâm của đường tròn bàng tiếp được xác định bởi giao điểm giữa một đường phân giác trong và hai đường phân giác ngoài của các góc tam giác.
Đặc biệt, mỗi tam giác có ba đường tròn bàng tiếp ứng với ba góc của nó.
Ví dụ: Với tam giác ABC, tâm của đường tròn bàng tiếp ứng với góc A là giao điểm của đường phân giác trong góc A và hai đường phân giác ngoài của các góc B và C.
Để nắm rõ kiến thức cơ bản trên thì phải luyện tập thường xuyên với các dạng bài tập. Dưới đây là các dạng cơ bản và nâng cao mà bạn có thể tham khảo.
Bài 1: Cho đường tròn (O) với điểm A nằm bên ngoài đường tròn. Kẻ hai tiếp tuyến AM và AN từ A đến đường tròn, với M và N là các điểm tiếp xúc.
a, Chứng minh rằng OA ⊥ MN
b, Vẽ đường kính NOC. Chứng minh rằng MC//AO.
c, Tính độ dài các cạnh của tam giác AMN biết QM=3cm, OA=5cm.
Giải
a) Ta có:
AM=AN (theo tính chất hai tiếp tuyến cắt nhau từ một điểm ngoài đường tròn).
OM=ON (vì cả hai đều là bán kính của đường tròn (O)).
Từ đây, suy ra AO là đường trung trực của đoạn MN. Do đó, OA⊥MN.
b) Trong tam giác MNC:
Vì NC là đường kính, suy ra .
Điều này cho thấy NM⊥MC.
Mặt khác, đã chứng minh OA⊥MN ở phần trên, do đó MC//AO.
c) Cho biết QM=3 cm và OA=5 cm.
Trong tam giác vuông AMO, áp dụng định lý Pythagore:
Vì AM=AN, ta có AN=4 cm.
Xét tam giác vuông AMO, theo hệ thức lượng trong tam giác vuông, ta có:
Thay các giá trị vào:
Vì MN=2⋅MD, ta tính được:
Kết luận: AM=AN=4 cm và .
Bài 2: Cho đường tròn (O) với điểm M nằm ngoài đường tròn. Vẽ hai tiếp tuyến MD và ME đến đường tròn, với D và E là các điểm tiếp xúc. Qua điểm I nằm trên cung nhỏ DE, ta kẻ tiếp tuyến với đường tròn, tiếp tuyến này cắt MD tại P và ME tại Q. Biết rằng MD=4cm, tính chu vi tam giác MPQ.
Vì PD và PI là hai tiếp tuyến từ điểm P đến đường tròn (O), nên PD=PI.
Tương tự, QI và QE là hai tiếp tuyến từ điểm Q đến đường tròn (O), nên QI=QE.
Cuối cùng, do MD và ME đều là tiếp tuyến từ M đến đường tròn (O), nên MD=ME.
Chu vi tam giác MPQ được tính bằng:
MP+PQ+MQ.
Ta có:
MP=MD−PD,PQ=PI+IQ,MQ=ME−QE.
Do đó, chu vi MPQ trở thành:
(MD−PI)+PI+QE+(MD−QE)=2⋅MD=2⋅4=8cm.
Vậy chu vi tam giác MPQ là 8 cm.
Bài 3: Cho nửa đường tròn tâm O với đường kính AB. Trên đường thẳng AB, ta có các tia Ax và By vuông góc với AB, cùng thuộc một nửa mặt phẳng chứa nửa đường tròn. Gọi M là một điểm bất kỳ thuộc tia Ax. Qua M, kẻ tiếp tuyến với nửa đường tròn, cắt By tại N.
a) Tính số đo góc
b) Chứng minh rằng MN=AM+BN
c) Chứng minh rằng
a) Vì NB và NE là hai tiếp tuyến cắt nhau tại N, theo tính chất của tiếp tuyến, ta có:
và .(theo tính chất 2 tiếp tuyến cắt nhau)
Và OB = OE ; NB = NE (theo tính chất 2 tiếp tuyến cắt nhau).
Ta có: ME và MA là 2 tiếp tuyến cắt nhau tại M
=> và (theo tính chất 2 tiếp tuyến cắt nhau).
OA=OE; ME=MA (theo tính chất 2 tiếp tuyến cắt nhau).
Do đó, .
Vì và , suy ra , tức là .
Vậy .
b) Ta có:
MN=ME+NE=AM+BN
vì ME=MA và NB=NE (do hai cặp tiếp tuyến bằng nhau từ tính chất đã chứng minh ở trên).
c) Trong tam giác vuông MAO, ta có . Vì , suy ra .
Ngoài ra, trong tam giác vuông MON, ta có , nên . Mà , suy ra .
Xét hai tam giác MAO và OBN:
.
(theo chứng minh trên).
Do đó, hai tam giác MAO và OBN đồng dạng theo trường hợp góc-góc (g-g), suy ra:
Vậy .
Xem thêm:
Tổng quát các kiến thức cơ bản về đường tròn
Khám phá vị trí tương đối của đường thẳng và đường tròn
Khi bạn hiểu rõ tính chất 2 tiếp tuyến cắt nhau, các bài toán hình học nâng cao sẽ được giải 1 cách dễ dàng hơn. Trung tâm gia sư online Học là Giỏi hy vọng rằng qua bài này, bạn đã tiếp thu được những kiến thức và sẵn sàng đối đầu với các bài toán khó hơn trong tương lai về tính chất đặc biệt này nhé.
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
Tổng hợp đề thi & đáp án vào lớp 10 của 63 tỉnh thành 2025-2026
Thứ hai, 19/5/2025Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Bài mẫu viết đoạn văn bằng tiếng anh về môi trường
Thứ ba, 28/5/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ ba, 3/6/2025 08:55 AM
Đáp án, đề thi môn Toán vào 10 tỉnh Quảng Nam 2025
Bài viết dưới đây sẽ cung cấp đầy đủ nội dung đáp án, đề thi môn Toán vào 10 tỉnh Quảng Nam 2025 chính thức giúp các em đối chiếu kết quả và đánh giá năng lực một cách chính xác.
Thứ ba, 3/6/2025 03:39 AM
Đáp án, đề thi môn Toán vào 10 tỉnh Hà Tĩnh 2025
Bài viết này sẽ cung cấp đầy đủ nội dung đáp án, đề thi môn Toán vào 10 tỉnh Hà Tĩnh 2025 giúp thí sinh dễ dàng đối chiếu bài làm và đánh giá kết quả. Đây là thông tin quan trọng hỗ trợ học sinh và phụ huynh theo dõi sát tình hình kỳ thi tuyển sinh lớp 10 năm nay tại Hà Tĩnh.
Thứ hai, 2/6/2025 07:22 AM
Đáp án, đề thi môn Toán vào 10 tỉnh Ninh Bình 2025
Bài viết dưới đây sẽ cung cấp đầy đủ nội dung đáp án, đề thi môn Toán vào 10 tỉnh Ninh Bình 2025, giúp thí sinh đối chiếu kết quả, đánh giá năng lực của mình nhé.
Thứ hai, 2/6/2025 07:11 AM
Đáp án, đề thi môn Toán vào 10 tỉnh Kon Tum 2025
Học là Giỏi cung cấp đầy đủ đáp án, đề thi môn Toán vào 10 tỉnh Kon Tum 2025, giúp thí sinh dễ dàng đối chiếu kết quả, tự đánh giá năng lực bản thân nhé.
Thứ hai, 2/6/2025 06:58 AM
Đáp án, đề thi môn Toán vào 10 TP Huế 2025
Học là Giỏi sẽ cung cấp đầy đủ đáp án, đề thi môn Toán vào 10 TP Huế 2025, hỗ trợ thí sinh kiểm tra kết quả, đánh giá điểm số bài làm của mình nhé.
Thứ hai, 2/6/2025 06:52 AM
Đáp án, đề thi môn Toán vào 10 tỉnh Đồng Tháp 2025
Học là Giỏi sẽ cập nhật nhanh nhất đáp án, đề thi môn Toán vào 10 tỉnh Đồng Tháp 2025 giúp thí sinh đối chiếu kết quả, đánh giá năng lực và chuẩn bị tốt hơn cho các bước tiếp theo.