Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Vị trí tương đối của đường thẳng và đường tròn là khái niệm quan trọng trong hình học, đóng vai trò nền tảng trong việc giải quyết các bài toán lớp 9. Trong bài viết này, gia sư online Học là Giỏi sẽ cùng khám phá ba trường hợp cơ bản về vị trí tương đối của đường thẳng và đường tròn nhé.
Mục lục [Ẩn]
Mối quan hệ giữa đường thẳng và đường tròn sẽ được chia làm 3 dạng căn bản để bạn dễ dàng xác định vị trí tương đối giữa chúng. Để xác định vị trí tương đối rõ hơn, dưới đây là khái quát về khái niệm cơ bản này.
Định nghĩa: Khi một đường thẳng và một đường tròn có hai điểm chung, ta nói rằng đường thẳng và đường tròn đó giao nhau.
Trong trường hợp này, mỗi điểm chung được gọi là một điểm giao.
Lưu ý: Đường thẳng a sẽ giao với đường tròn (O;R) khi khoảng cách từ tâm O đến đường thẳng a nhỏ hơn bán kính R, và ngược lại.
Khi đó, đường thẳng a được gọi là cát tuyến của đường tròn (O).
Định nghĩa: Khi một đường thẳng và một đường tròn có duy nhất một điểm chung, ta nói rằng chúng tiếp xúc với nhau tại điểm đó.
Khi đường thẳng tiếp xúc với đường tròn, ta gọi đường thẳng là tiếp tuyến của đường tròn, và điểm chung được gọi là tiếp điểm.
Nhận xét: Đường thẳng a sẽ tiếp xúc với đường tròn (O;R) khi khoảng cách từ tâm O đến đường thẳng a bằng bán kính R, và ngược lại.
Định lý: Nếu một đường thẳng là tiếp tuyến của một đường tròn, thì nó sẽ vuông góc với bán kính của đường tròn đi qua tiếp điểm.
Định nghĩa: Khi một đường thẳng và một đường tròn không có điểm chung nào, ta nói rằng chúng không giao nhau.
Nhận xét: Đường thẳng a và đường tròn (O;R) sẽ không giao nhau nếu khoảng cách từ tâm O đến đường thẳng aaa lớn hơn bán kính R, và ngược lại.
Vị trí tương đối của đường thẳng a và đường tròn (O;R) có thể được xác định dựa trên mối quan hệ giữa khoảng cách d từ tâm O đến đường thẳng a và bán kính R, như được trình bày trong bảng sau:
Vị trí tương đối | Đường thẳng và đường tròn cắt nhau | Đường thẳng và đường tròn tiếp xúc nhau | Đường thẳng và đường tròn không giao nhau |
---|---|---|---|
Số điểm chung | 2 | 1 | 0 |
Quan hệ giữa d và R | d<R | d=R | d>R |
Trong đó:
- d: khoảng cách từ tâm đường tròn đến đường thẳng.
- R: bán kính của đường tròn.
Để nắm rõ kiến thức cơ bản trên thì phải luyện tập thường xuyên với các dạng bài tập. Dưới đây là các dạng cơ bản và nâng cao mà bạn có thể tham khảo.
Bài 1: Cho điểm A nằm trên đường tròn (O;3cm). Trên tiếp tuyến tại A của đường tròn (O), lấy điểm B sao cho AB=4cm. Tính độ dài đoạn OB.
Do AB là tiếp tuyến của đường tròn (O;3cm), nên AB vuông góc với OA, do đó góc .
Áp dụng định lý Pythagoras trong tam giác vuông AOB:
Thay số:
Suy ra: OB=5cm.
Bài 2: Cho đường tròn (O;15cm) với dây AB=24cm. Một tiếp tuyến của đường tròn song song với AB cắt OA và OB lần lượt tại E và F. Tính độ dài EF.
Dễ thấy tam giác OAB đồng dạng với tam giác OEF, nên tam giác OEF cân tại O.
Gọi I là tiếp điểm của tiếp tuyến và M là trung điểm của AB.
Vì OM vuông góc với AB, ta có OI vuông góc với EF.
Trong tam giác vuông OMB:
OM=9cm
Do MB//IF, theo định lý Thales, ta có:
Suy ra:
EF=40cm
Bài 3: Cho tam giác ABC vuông tại A (với AB<AC), đường cao AH. E là điểm đối xứng của B qua H. Vẽ một đường tròn có đường kính EC cắt AC tại K. Xác định vị trí tương đối của đường thẳng HK với đường tròn có đường kính EC.
Gọi I là tâm của đường tròn có đường kính EC, tức là I là trung điểm của EC.
Vì EC là đường kính của đường tròn này và K thuộc đường tròn, ta có EK vuông góc với KC.
Do K thuộc AC, suy ra AC vuông góc với EK.
Mặt khác, vì tam giác ABC vuông tại A, ta có AB vuông góc với AC, do đó AB//KE.
Suy ra tứ giác ABEK là hình thang (theo dấu hiệu nhận biết hình thang).
Gọi M là trung điểm của AK. Vì E đối xứng với B qua H, suy ra H là trung điểm của BE. Do đó, HM là đường trung bình của hình thang ABEK, và HM//EK. Vì EK vuông góc với AC, ta có HM vuông góc với AC, do đó HM vuông góc với AK.
HM vừa là đường cao, vừa là đường trung tuyến của tam giác AHK, nên tam giác AHK là tam giác cân tại H, suy ra (1).
Vì AK vuông góc với EK và AH vuông góc với BE, ta có (2).
Từ (1) và (2), ta suy ra: . Do đó,
Suy ra, HK vuông góc với IK, do đó HK và đường tròn có đường kính EC tiếp xúc với nhau.
Bài 4: Cho tam giác ABC vuông tại A (với AB<AC) và đường cao AH. Gọi E là điểm đối xứng của B qua H. Đường tròn tâm O có đường kính EC, cắt AC tại K. Chứng minh rằng HK là tiếp tuyến của đường tròn (O).
Vì tam giác EKC có cạnh EC là đường kính của đường tròn (O), ta có .
Kẻ HI vuông góc với AC, ta có BA//HI//EK. Suy ra AI=IK, từ đó ta suy ra tam giác AHK là tam giác cân tại H.
Do đó, (vì đây là hai góc phụ với góc bằng nhau, là và ).
Mặt khác, ta có (do tam giác KOC là tam giác cân tại O).
Vì , ta suy ra , từ đó .
Vậy HK vuông góc với OK, suy ra HK là tiếp tuyến của đường tròn (O).
Việc hiểu và áp dụng đúng vị trí tương đối của đường thẳng và đường tròn sẽ giúp bạn giải quyết các bài toán hình học phức tạp. Trung tâm gia sư online Học là Giỏi hy vọng rằng qua những kiến thức này, bạn hiểu thêm kiến thức và sẵn sàng xử lí với các bài toán khó hơn trong tương lai về vị trí tương đối này nhé.
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
Tổng hợp đáp án, đề thi tốt nghiệp THPT 2025-2026
Thứ sáu, 13/6/2025Tổng hợp đề thi & đáp án vào lớp 10 của 63 tỉnh thành 2025-2026
Thứ hai, 19/5/2025Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ năm, 3/7/2025 09:37 AM
Cách so sánh phân số chính xác và dễ hiểu cho học sinh
Trong chương trình toán tiểu học, so sánh phân số là kỹ năng nền tảng giúp học sinh nhận biết trong các đơn vị chia không đều. Trong bài viết này, Học là Giỏi sẽ đồng hành cùng bạn khám phá các phương pháp so sánh phân số cùng với những bài tập ứng dụng đa dạng để bạn luyện tập hiệu quả và tự tin hơn khi làm bài nhé.
Thứ năm, 3/7/2025 03:24 AM
Phân số bằng nhau là gì? Cách nhận biết đơn giản nhất
Trong chương trình Toán lớp 4, phân số bằng nhau là một trong những nội dung quan trọng giúp học sinh hiểu sâu hơn về mối quan hệ giữa các phần. Học là Giỏi sẽ cùng bạn tìm hiểu chi tiết kiến thức về dạng phân số này trong bài viết dưới đây nhé.
Thứ tư, 2/7/2025 03:40 AM
Tử số và mẫu số là gì? Kiến thức nền tảng về phân số
Khi học về phân số, chắc hẳn bạn đã từng thắc mắc: Tử số và mẫu số là gì? Đây là khái niệm xuất hiện thường xuyên trong chương trình Toán tiểu học. Học là Giỏi sẽ cung cấp chi tiết kiến thức trong bài viết sau giúp bạn hiểu rõ tử số và mẫu số trong toán học nhé.
Thứ ba, 1/7/2025 08:07 AM
Các phương pháp quy đồng mẫu số các phân số
Trong chương trình toán tiểu học, phân số luôn là phần kiến thức khiến nhiều học sinh cảm thấy khó tiếp cận. Đặc biệt, việc quy đồng mẫu số thường gây nhầm lẫn nếu không được hướng dẫn cụ thể. Học là Giỏi sẽ giúp bạn giải đáp tất cả những thắc mắc về quy đồng mẫu số các phân số một cách dễ hiểu và chi tiết.
Thứ ba, 17/6/2025 04:12 AM
Đáp án, đề thi môn Toán vào 10 tỉnh Lâm Đồng 2025
Học là Giỏi tổng hợp trọn bộ đáp án, đề thi môn Toán vào 10 tỉnh Lâm Đồng 2025 nhằm hỗ trợ học sinh thuận tiện trong việc so sánh kết quả và tự đánh giá năng lực làm bài.
Thứ sáu, 13/6/2025 07:11 AM
Đáp án, đề thi môn Toán THPT Quốc gia 2025
Bài viết cập nhật nhanh chóng và chính xác đề thi cùng đáp án giúp thí sinh so sánh kết quả và định hướng các nguyện vọng phù hợp. Học là Giỏi cung cấp đề thi chính thức môn Toán THPT Quốc gia 2025 được thi vào chiều ngày 26/06/2025 kèm đáp án chi tiết từng mã đề, hỗ trợ thí sinh tra cứu dễ dàng và tiện lợi.