Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Hàm số là kiến thức quan trọng trong chương trình toán phổ thông và không thể thiếu trong các bài kiểm tra của các bạn học sinh. Vậy làm thế nào để nắm vững được kiến thức về hàm số? Hãy theo chân Học là Giỏi khám phá nhé!
Mục lục [Ẩn]
+) Nếu đại lượng $y$ phụ thuộc vào đại lượng thay đổi $x$ sao cho với mỗi giá trị của $x$, ta luôn xác định được một và chỉ một giá trị tương ứng của $y$ thì $y$ gọi là hàm số của $x$ ( $x$ gọi là biến số).
Ta viết : $y=f(x), y=g(x), \ldots$
+) Giá trị của hàm số $f(x)$ tại điểm $x_0$ kí hiệu là $f\left(x_0\right)$.
+) Tập xác định $D$ của hàm số $f(x)$ là tập hợp các giá trị của $x$ sao cho $f(x)$ có nghĩa.
+) Khi $x$ thay đổi mà $y$ luôn nhận một giá trị không đổi thì hàm số $y=f(x)$ gọi là hàm hằng.
Đồ thị của hàm số $y=f(x)$ là tập hợp tất cả các điểm $M(x ; y)$ trong mặt phẳng tọa độ $Oxy$ sao cho $x, y$ thỏa mãn hệ thức $y=f(x)$
Cho hàm số $y=f(x)$ xác định trên tập $D$. Khi đó :
$$
\begin{aligned}
& \text { - Hàm số đồng biến trên } D \\
& \Leftrightarrow \forall x_1, x_2 \in D: x_1<x_2 \Rightarrow f\left(x_1\right)<f\left(x_2\right) \\
& \text { - Hàm số nghịch biến trên } D \\
& \Leftrightarrow \forall x_1, x_2 \in D: x_1<x_2 \Rightarrow f\left(x_1\right)>f\left(x_2\right) \\
\end{aligned}
$$
Dạng 1. Tính giá trị của hàm số tại một điểm
Phương pháp:
Để tính giá trị $y_0$ của hàm số $y=f(x)$ tại điểm $x_0$ ta thay $x=x_0$ vào $f(x)$, ta được $y_0=f\left(x_0\right)$.
Dạng 2. Biểu diễn tọa độ của một điểm và xác định điểm thuộc đồ thị hàm số
Phương pháp:
Điểm $M\left(x_0 ; y_0\right)$ thuộc đồ thị hàm số $y=f(x)$ khi $y_0=f\left(x_0\right)$
Phương pháp:
Bước 1: Tìm tập xác định $D$ của hàm số.
Bước 2: Giả sử $x_1<x_2$ và $x_1, x_2 \in D$. Xét hiệu $H=f\left(x_1\right)-f\left(x_2\right)$
+ Nếu $H<0$ với $x_1, x_2$ bất kỳ thì hàm số đồng biến.
+ Nếu $H>0$ với $x_1, x_2$ bất kỳ thì hàm số nghịch biến.
Ví dụ: Xét sự đồng biến, nghịch biến của hàm số $y=f(x)=3 x+1$
Cách giải:
Hàm số xác định với mọi $x \in \mathbb{R}$
Giả sử $x_1<x_2$ và $x_1, x_2 \in \mathbb{R}$
Ta có:
$$
\begin{aligned}
& f\left(x_1\right)=3 x_1+1 \\
& f\left(x_2\right)=3 x_2+1
\end{aligned}
$$
Suy ra $f\left(x_1\right)-f\left(x_2\right)=3 x_1+1-\left(3 x_2+1\right)$ $=3\left(x_1-x_2\right)<0$ (vì $x_1<x_2$ nên $\left.x_1-x_2<0\right)$
Hay $f\left(x_1\right)<f\left(x_2\right)$
Vậy với $x_1<x_2$ ta được $f\left(x_1\right)<f\left(x_2\right)$ nên hàm số $y=f(x)=3 x+1$ đồng biến trên $\mathbb{R}$.
Phương pháp:
+) Đồ thị hàm số dạng $y=a x(a \neq 0)$ là đường thẳng đi qua gốc tọa độ $O$ và điểm $E(1 ; a)$.
+) Cho hai điểm $A\left(x_A ; y_A\right)$ và $B\left(x_B ; y_B\right)$. Khi đó độ dài đoạn thẳng $A B$ được tính theo công thức: $A B=\sqrt{\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2}$
Trên đây là tổng hợp kiến thức về hàm số trong Toán . Học là Giỏi mong rằng, nó sẽ giúp ích cho các bạn tra cứu và áp dụng giải được các bài toán trong chương trình toán phổ thông nhé.
Xem thêm:
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
STEM là gì? Lợi ích và ứng dụng trong giáo dục hiện đại
Thứ ba, 12/8/2025Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Bảng tuần hoàn nguyên tố hóa học theo chương trình mới
Thứ hai, 15/4/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ năm, 28/8/2025 04:23 AM
Tia là gì? Khái niệm cơ bản và tính chất trong hình học
Trong hình học, một trong những khái niệm mà học sinh cần nắm vững chính là tia. Nhiều bạn thường đặt câu hỏi: tia là gì và cách phân biệt nó với đoạn thẳng hay đường thẳng như thế nào? Học là Giỏi sẽ giúp bạn tìm hiểu chi tiết về tia là gì, các tính chất quan trọng và những bài tập minh họa dễ hiểu qua bài viết dưới đây nhé.
Thứ tư, 27/8/2025 02:03 PM
Đoạn thẳng là gì? Cách tính độ dài đoạn thẳng
Trong chương trình toán học cơ bản, từ những bài toán hình học đầu tiên, học sinh đã được làm quen với đoạn thẳng để nghiên cứu đường thẳng, góc, tam giác hay các hình đa giác phức tạp hơn. Học là Giỏi sẽ giúp bạn hiểu rõ khái niệm, tính chất và các dạng bài tập cũng như nắm bắt được cách tính độ dài đoạn thẳng nhé.
Thứ tư, 27/8/2025 08:20 AM
Đường thẳng và những kiến thức nền tảng cần ghi nhớ
Trong hình học, đường thẳng là một trong những khái niệm cơ bản và xuất hiện nhiều trong các đề thi và bài kiểm tra. Học là Giỏi sẽ giúp bạn hiểu rõ hơn về đặc điểm, ứng dụng và cách giải bài tập liên quan đến đường thẳng thông qua bài viết này nhé.
Thứ tư, 27/8/2025 03:12 AM
Hướng dẫn học bảng nhân 6 hiệu quả tại nhà
Bảng nhân 6 là một phần không thể thiếu trong bảng cửu chương, thường xuất hiện trong nhiều dạng bài tập và tình huống thực tế. Học là Giỏi sẽ giúp bạn hiểu rõ quy luật, ghi nhớ dễ dàng và thực hành hiệu quả bảng nhân 6.
Thứ ba, 26/8/2025 09:12 AM
Tổng hợp công thức tính phương sai và độ lệch chuẩn dễ nhớ
Trong thống kê và xác suất, cách dữ liệu phân tán quanh giá trị trung bình có ý nghĩa trong học tập cũng như thực tiễn. Hai công thức này thường được sử dụng để đo lường mức độ biến động đó chính là phương sai và độ lệch chuẩn. Học là Giỏi sẽ giúp bạn nắm vững kiến thức cơ bản về phương sai và độ lệch chuẩn, kèm theo bài tập minh họa dễ hiểu.
Thứ hai, 25/8/2025 09:45 AM
Tập hợp con là gì? Các trường hợp đặc biệt của tập hợp con
Khái niệm tập hợp hỗ trợ học sinh làm quen với cách mô tả và phân loại đối tượng trong môn toán cấp 3. Trong đó, tập hợp con là gì luôn là câu hỏi thường gặp bởi đây là kiến thức cơ bản nhưng lại có ứng dụng trong nhiều dạng bài tập. Học là Giỏi sẽ giúp bạn nắm vững khái niệm, tính chất và cách vận dụng tập hợp con một cách rõ ràng, dễ hiểu.