Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức

Tổng hợp khái niệm về hàm số và đồ thị hàm số

schedule.svg

Thứ tư, 29/5/2024 07:02 AM

Tác giả: Admin Hoclagioi

Hàm số là kiến thức quan trọng trong chương trình toán phổ thông và không thể thiếu trong các bài kiểm tra của các bạn học sinh. Vậy làm thế nào để nắm vững được kiến thức về hàm số? Hãy theo chân Học là Giỏi khám phá nhé!

Mục lục [Ẩn]

Khái niệm về hàm số và đồ thị hàm số

Khái niệm hàm số

+) Nếu đại lượng $y$ phụ thuộc vào đại lượng thay đổi $x$ sao cho với mỗi giá trị của $x$, ta luôn xác định được một và chỉ một giá trị tương ứng của $y$ thì $y$ gọi là hàm số của $x$ ( $x$ gọi là biến số).

Ta viết : $y=f(x), y=g(x), \ldots$

+) Giá trị của hàm số $f(x)$ tại điểm $x_0$ kí hiệu là $f\left(x_0\right)$.

+) Tập xác định $D$ của hàm số $f(x)$ là tập hợp các giá trị của $x$ sao cho $f(x)$ có nghĩa.

+) Khi $x$ thay đổi mà $y$ luôn nhận một giá trị không đổi thì hàm số $y=f(x)$ gọi là hàm hằng.

Đồ thị của hàm số

Đồ thị của hàm số $y=f(x)$ là tập hợp tất cả các điểm $M(x ; y)$ trong mặt phẳng tọa độ $Oxy$ sao cho $x, y$ thỏa mãn hệ thức $y=f(x)$

Hàm số đồng biến, nghịch biến

Cho hàm số $y=f(x)$ xác định trên tập $D$. Khi đó :

$$

\begin{aligned}

& \text { - Hàm số đồng biến trên } D \\

& \Leftrightarrow \forall x_1, x_2 \in D: x_1<x_2 \Rightarrow f\left(x_1\right)<f\left(x_2\right) \\

& \text { - Hàm số nghịch biến trên } D \\

& \Leftrightarrow \forall x_1, x_2 \in D: x_1<x_2 \Rightarrow f\left(x_1\right)>f\left(x_2\right) \\

\end{aligned}

$$

Các dạng toán thường gặp

Dạng 1. Tính giá trị của hàm số tại một điểm

Phương pháp:

Để tính giá trị $y_0$ của hàm số $y=f(x)$ tại điểm $x_0$ ta thay $x=x_0$ vào $f(x)$, ta được $y_0=f\left(x_0\right)$.

Dạng 2. Biểu diễn tọa độ của một điểm và xác định điểm thuộc đồ thị hàm số

Phương pháp:

Điểm $M\left(x_0 ; y_0\right)$ thuộc đồ thị hàm số $y=f(x)$ khi $y_0=f\left(x_0\right)$

Dạng 3 : Xét sự đồng biến và nghịch biến của hàm số

Phương pháp:

Bước 1: Tìm tập xác định $D$ của hàm số.

Bước 2: Giả sử $x_1<x_2$ và $x_1, x_2 \in D$. Xét hiệu $H=f\left(x_1\right)-f\left(x_2\right)$

+ Nếu $H<0$ với $x_1, x_2$ bất kỳ thì hàm số đồng biến.

+ Nếu $H>0$ với $x_1, x_2$ bất kỳ thì hàm số nghịch biến.

Ví dụ: Xét sự đồng biến, nghịch biến của hàm số $y=f(x)=3 x+1$

Cách giải:

Hàm số xác định với mọi $x \in \mathbb{R}$

Giả sử $x_1<x_2$ và $x_1, x_2 \in \mathbb{R}$

Ta có:

$$

\begin{aligned}

& f\left(x_1\right)=3 x_1+1 \\

& f\left(x_2\right)=3 x_2+1

\end{aligned}

$$

Suy ra $f\left(x_1\right)-f\left(x_2\right)=3 x_1+1-\left(3 x_2+1\right)$ $=3\left(x_1-x_2\right)<0$ (vì $x_1<x_2$ nên $\left.x_1-x_2<0\right)$

Hay $f\left(x_1\right)<f\left(x_2\right)$

Vậy với $x_1<x_2$ ta được $f\left(x_1\right)<f\left(x_2\right)$ nên hàm số $y=f(x)=3 x+1$ đồng biến trên $\mathbb{R}$.

Dạng 4 : Bài toán liên quan đến đồ thị hàm số $y=a x(a \neq 0)$

Phương pháp:

+) Đồ thị hàm số dạng $y=a x(a \neq 0)$ là đường thẳng đi qua gốc tọa độ $O$ và điểm $E(1 ; a)$.

+) Cho hai điểm $A\left(x_A ; y_A\right)$ và $B\left(x_B ; y_B\right)$. Khi đó độ dài đoạn thẳng $A B$ được tính theo công thức: $A B=\sqrt{\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2}$


 

Trên đây là tổng hợp kiến thức về hàm số trong Toán . Học là Giỏi mong rằng, nó sẽ giúp ích cho các bạn tra cứu và áp dụng giải được các bài toán trong chương trình toán phổ thông nhé.


 

Xem thêm:

Cách vẽ đồ thị hàm số bậc nhất và các bài toán liên quan

Tổng hợp chi tiết các dạng bài tập về hàm số liên tục

Chủ đề:

Đăng ký học thử ngay hôm nay

Để con học sớm - Ôn sâu và nhận ưu đãi học phí!

Bài viết liên quan

Tia là gì? Khái niệm cơ bản và tính chất trong hình học
schedule

Thứ năm, 28/8/2025 04:23 AM

Tia là gì? Khái niệm cơ bản và tính chất trong hình học

Trong hình học, một trong những khái niệm mà học sinh cần nắm vững chính là tia. Nhiều bạn thường đặt câu hỏi: tia là gì và cách phân biệt nó với đoạn thẳng hay đường thẳng như thế nào? Học là Giỏi sẽ giúp bạn tìm hiểu chi tiết về tia là gì, các tính chất quan trọng và những bài tập minh họa dễ hiểu qua bài viết dưới đây nhé.

Đoạn thẳng là gì? Cách tính độ dài đoạn thẳng
schedule

Thứ tư, 27/8/2025 02:03 PM

Đoạn thẳng là gì? Cách tính độ dài đoạn thẳng

Trong chương trình toán học cơ bản, từ những bài toán hình học đầu tiên, học sinh đã được làm quen với đoạn thẳng để nghiên cứu đường thẳng, góc, tam giác hay các hình đa giác phức tạp hơn. Học là Giỏi sẽ giúp bạn hiểu rõ khái niệm, tính chất và các dạng bài tập cũng như nắm bắt được cách tính độ dài đoạn thẳng nhé.

Đường thẳng và những kiến thức nền tảng cần ghi nhớ
schedule

Thứ tư, 27/8/2025 08:20 AM

Đường thẳng và những kiến thức nền tảng cần ghi nhớ

Trong hình học, đường thẳng là một trong những khái niệm cơ bản và xuất hiện nhiều trong các đề thi và bài kiểm tra. Học là Giỏi sẽ giúp bạn hiểu rõ hơn về đặc điểm, ứng dụng và cách giải bài tập liên quan đến đường thẳng thông qua bài viết này nhé.

Hướng dẫn học bảng nhân 6 hiệu quả tại nhà
schedule

Thứ tư, 27/8/2025 03:12 AM

Hướng dẫn học bảng nhân 6 hiệu quả tại nhà

Bảng nhân 6 là một phần không thể thiếu trong bảng cửu chương, thường xuất hiện trong nhiều dạng bài tập và tình huống thực tế. Học là Giỏi sẽ giúp bạn hiểu rõ quy luật, ghi nhớ dễ dàng và thực hành hiệu quả bảng nhân 6.

Tổng hợp công thức tính phương sai và độ lệch chuẩn dễ nhớ
schedule

Thứ ba, 26/8/2025 09:12 AM

Tổng hợp công thức tính phương sai và độ lệch chuẩn dễ nhớ

Trong thống kê và xác suất, cách dữ liệu phân tán quanh giá trị trung bình có ý nghĩa trong học tập cũng như thực tiễn. Hai công thức này thường được sử dụng để đo lường mức độ biến động đó chính là phương sai và độ lệch chuẩn. Học là Giỏi sẽ giúp bạn nắm vững kiến thức cơ bản về phương sai và độ lệch chuẩn, kèm theo bài tập minh họa dễ hiểu.

Tập hợp con là gì? Các trường hợp đặc biệt của tập hợp con
schedule

Thứ hai, 25/8/2025 09:45 AM

Tập hợp con là gì? Các trường hợp đặc biệt của tập hợp con

Khái niệm tập hợp hỗ trợ học sinh làm quen với cách mô tả và phân loại đối tượng trong môn toán cấp 3. Trong đó, tập hợp con là gì luôn là câu hỏi thường gặp bởi đây là kiến thức cơ bản nhưng lại có ứng dụng trong nhiều dạng bài tập. Học là Giỏi sẽ giúp bạn nắm vững khái niệm, tính chất và cách vận dụng tập hợp con một cách rõ ràng, dễ hiểu.

message.svg zalo.png