Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Hàm số là kiến thức quan trọng trong chương trình toán phổ thông và không thể thiếu trong các bài kiểm tra của các bạn học sinh. Vậy làm thế nào để nắm vững được kiến thức về hàm số? Hãy theo chân Học là Giỏi khám phá nhé!
Mục lục [Ẩn]
+) Nếu đại lượng $y$ phụ thuộc vào đại lượng thay đổi $x$ sao cho với mỗi giá trị của $x$, ta luôn xác định được một và chỉ một giá trị tương ứng của $y$ thì $y$ gọi là hàm số của $x$ ( $x$ gọi là biến số).
Ta viết : $y=f(x), y=g(x), \ldots$
+) Giá trị của hàm số $f(x)$ tại điểm $x_0$ kí hiệu là $f\left(x_0\right)$.
+) Tập xác định $D$ của hàm số $f(x)$ là tập hợp các giá trị của $x$ sao cho $f(x)$ có nghĩa.
+) Khi $x$ thay đổi mà $y$ luôn nhận một giá trị không đổi thì hàm số $y=f(x)$ gọi là hàm hằng.
Đồ thị của hàm số $y=f(x)$ là tập hợp tất cả các điểm $M(x ; y)$ trong mặt phẳng tọa độ $Oxy$ sao cho $x, y$ thỏa mãn hệ thức $y=f(x)$
Cho hàm số $y=f(x)$ xác định trên tập $D$. Khi đó :
$$
\begin{aligned}
& \text { - Hàm số đồng biến trên } D \\
& \Leftrightarrow \forall x_1, x_2 \in D: x_1<x_2 \Rightarrow f\left(x_1\right)<f\left(x_2\right) \\
& \text { - Hàm số nghịch biến trên } D \\
& \Leftrightarrow \forall x_1, x_2 \in D: x_1<x_2 \Rightarrow f\left(x_1\right)>f\left(x_2\right) \\
\end{aligned}
$$
Dạng 1. Tính giá trị của hàm số tại một điểm
Phương pháp:
Để tính giá trị $y_0$ của hàm số $y=f(x)$ tại điểm $x_0$ ta thay $x=x_0$ vào $f(x)$, ta được $y_0=f\left(x_0\right)$.
Dạng 2. Biểu diễn tọa độ của một điểm và xác định điểm thuộc đồ thị hàm số
Phương pháp:
Điểm $M\left(x_0 ; y_0\right)$ thuộc đồ thị hàm số $y=f(x)$ khi $y_0=f\left(x_0\right)$
Phương pháp:
Bước 1: Tìm tập xác định $D$ của hàm số.
Bước 2: Giả sử $x_1<x_2$ và $x_1, x_2 \in D$. Xét hiệu $H=f\left(x_1\right)-f\left(x_2\right)$
+ Nếu $H<0$ với $x_1, x_2$ bất kỳ thì hàm số đồng biến.
+ Nếu $H>0$ với $x_1, x_2$ bất kỳ thì hàm số nghịch biến.
Ví dụ: Xét sự đồng biến, nghịch biến của hàm số $y=f(x)=3 x+1$
Cách giải:
Hàm số xác định với mọi $x \in \mathbb{R}$
Giả sử $x_1<x_2$ và $x_1, x_2 \in \mathbb{R}$
Ta có:
$$
\begin{aligned}
& f\left(x_1\right)=3 x_1+1 \\
& f\left(x_2\right)=3 x_2+1
\end{aligned}
$$
Suy ra $f\left(x_1\right)-f\left(x_2\right)=3 x_1+1-\left(3 x_2+1\right)$ $=3\left(x_1-x_2\right)<0$ (vì $x_1<x_2$ nên $\left.x_1-x_2<0\right)$
Hay $f\left(x_1\right)<f\left(x_2\right)$
Vậy với $x_1<x_2$ ta được $f\left(x_1\right)<f\left(x_2\right)$ nên hàm số $y=f(x)=3 x+1$ đồng biến trên $\mathbb{R}$.
Phương pháp:
+) Đồ thị hàm số dạng $y=a x(a \neq 0)$ là đường thẳng đi qua gốc tọa độ $O$ và điểm $E(1 ; a)$.
+) Cho hai điểm $A\left(x_A ; y_A\right)$ và $B\left(x_B ; y_B\right)$. Khi đó độ dài đoạn thẳng $A B$ được tính theo công thức: $A B=\sqrt{\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2}$
Trên đây là tổng hợp kiến thức về hàm số trong Toán . Học là Giỏi mong rằng, nó sẽ giúp ích cho các bạn tra cứu và áp dụng giải được các bài toán trong chương trình toán phổ thông nhé.
Xem thêm:
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Bí kíp chinh phục các hằng đẳng thức mở rộng
Thứ tư, 14/8/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Thể thơ song thất lục bát trong văn chương Việt Nam
Thứ ba, 28/5/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ sáu, 25/4/2025 07:16 AM
Mẹo học bảng nhân 5 cực dễ hiểu cho học sinh tiểu học
Bảng nhân 5 là một phần không thể thiếu trong hệ thống bảng cửu chương hỗ trợ học sinh ghi nhớ và vận dụng phép nhân với số 5 một cách nhanh chóng. Hôm nay gia sư online Học là Giỏi sẽ cùng bạn khám phá chi tiết bảng nhân 5 nhé.
Thứ ba, 22/4/2025 03:21 AM
Bí quyết tìm gia sư toán lớp 9 ở Hà Nội uy tín
Lớp 9 là dấu mốc quan trọng quyết định tương lai học tập của học sinh vào cấp 3, đặc biệt là tại Hà Nội, nơi có môi trường giáo dục cạnh tranh khốc liệt. Trong bối cảnh ấy, việc tìm gia sư toán lớp 9 ở Hà Nội trở thành nhu cầu cấp thiết với nhiều phụ huynh nhằm giúp con tự tin bước vào kỳ thi chuyển cấp. Gia sư online Học là Giỏi sẽ cùng bạn tìm hiểu những lưu ý gì khi tìm gia sư toán lớp 9 ở Hà nội nhé.
Thứ hai, 21/4/2025 09:10 AM
Giải pháp tìm gia sư toán lớp 6 tại Hà Nội hiệu quả
Lớp 6 là bước ngoặt quan trọng khi con bắt đầu làm quen với tư duy Toán học nâng cao và chương trình đổi mới. Vì vậy, tìm gia sư Toán lớp 6 đang trở thành giải pháp thiết thực giúp học sinh tự tin hơn ngay từ những bài toán đầu tiên. Gia sư online Học là Giỏi sẽ cho bạn cái nhìn tổng thể trong việc tìm gia sư toán lớp 6 tại Hà Nội ở bài viết dưới đây nhé.
Thứ ba, 15/4/2025 10:22 AM
Các công thức và cách tính xác suất từ cơ bản đến nâng cao
Trong toán học và cuộc sống, việc dự đoán một sự kiện có xảy ra hay không luôn là điều khiến con người tò mò. Các công thức và cách tính xác suất sẽ giúp chúng ta đo lường mức độ xảy ra của một biến cố, từ những trò chơi may rủi cho đến các quyết định trong đời sống thực tế. Gia sư online Học là Giỏi giúp bạn hiểu rõ các công thức và cách tính xác suất từ những khái niệm cơ bản đến các công thức ứng dụng cao nhé.
Thứ sáu, 11/4/2025 10:03 AM
Tổng hợp các ký hiệu toán học cần ghi nhớ
Trong toán học, ký hiệu đóng vai trò giúp con người biểu đạt những khái niệm trừu tượng một cách logic và hệ thống. Gia sư online Học là Giỏi sẽ cung cấp các ký hiệu toán học ở trong bài viết để bạn có thể nắm bắt và biết cách sử dụng hơn nhé.
Thứ ba, 11/3/2025 07:55 AM
Bí quyết ghi nhớ bảng nhân 4 qua các bài tập thú vị
Bảng nhân 4 là một trong những kiến thức quan trọng trong toán học tiểu học, giúp học sinh rèn luyện tư duy và kỹ năng tính nhẩm nhanh. Gia sư online Học là Giỏi sẽ giúp bạn nắm vững bảng nhân 4 trong bài viết để bạn áp dụng phép nhân đối với các bài tập một cách hiệu quả.