Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Thứ tư, 15/5/2024 07:16 AM
Tác giả: Admin Hoclagioi
Hàm số liên tục được học trong chương trình toán 11, là kiến thức khá quan trọng, xuất hiện trong bài kiểm tra cuối kì. Tuy nhiên có nhiều bạn còn gặp khó khăn khi giải các bài tập này. Vì vậy, hãy theo chân Học là Giỏi ôn lại nhé!
Mục lục [Ẩn]
Hàm số $y=f(x)$ gọi là hàm số liên tục trên khoảng nếu hàm số đó liên tục tại mọi điểm thuộc khoảng đó. Cụ thể hơn, ta có định nghĩa khái quát chung như sau:
Cho hàm số $y=f(x)$ xác định trên $K, x_0 \in K$. Khi đó, $y=f(x)$ liên tục tại $x_0$ khi $\lim _{x \rightarrow x_0} f(x)=f\left(x_0\right)$.
Cho hàm số $y=f(x)$ xác định trên $(a;b)$ và $x_0 \epsilon(a ; b)$. Hàm số $y$ được gọi là hàm số liên tục tại 1 điểm $x_0$ khi $\lim _{x \rightarrow x_0} f(x)=f\left(x_0\right)$.
Ngược lại, nếu hàm số $f\left(x_0\right)$ không liên tục tại $x_0$ thì khi đó $x_0$ gọi là điểm gián đoạn của $f(x)$.
Nếu hàm số $y=f(x)$ liên tục trên một khoảng (a;b) thì khi đó hàm số $f(x)$ sẽ liên tục tại mọi điểm thuộc (a;b). Đồ thị hàm liên tục trên khoảng (a;b) được biểu diễn bằng một đường nét liền, không bị đứt gãy.
Các hàm số căn thức, phân thức, hàm số lượng giác đều liên tục trên từng khoảng xác định của chúng.
Ngoài ra, nếu đồ thị hàm số $y=f(x)$ liên tục trên khoảng $(a ; b)$ và thỏa mãn $\lim _{x \rightarrow a^{+}} f(x)=f(a) ; \lim _{x \rightarrow b} f(x)=f(b)$ thì đồ thị $y=f(x)$ liên tục trên đoạn [a;b].
Đối với một số hàm đa thức thì sẽ liên tục trên tập $\mathbb{R}$ mà không cần chứng minh, bao gồm: hàm lượng giác $y=\sin x, y=\cos x$, hàm đa thức, hàm phân thức có tập xác định $\mathbb{R}$, hàm mũ.
Định lí 1:
- Hàm số đa thức là loại hàm số liên tục trên $\mathbb{R}$.
- Hàm số thương của 2 đa thức (phân thức hữu tỉ) và các hàm số lượng giác đều liên tục trên từng khoảng của tập xác định.
Định lí 2: Cho hàm số $y=f(x)$ và $y=g(x)$ cùng liên tục tại điểm $x_0$. Khi đó:
$y=f(x)+g(x) \cdot y=f(x)-g(x) \cdot y=f(x) \cdot g(x)$ sẽ liên tục tại điểm $x_0$.
$y=\frac{f(x)}{g(x)}$ là hàm số liên tục tại $x_0$ khi $g\left(x_0\right) \neq 0$.
Định lí 3: Cho hàm số $y=f(x)$ liên tục trên $[a ; b]$ và thỏa mãn $f(a) . f(b)<0$. Tồn tại ít nhất 1 điểm c thuộc đoạn ( $a ; b$ ) thỏa mãn $\mathrm{f}(\mathrm{c})=0$.
Định lý này thường dùng để chứng minh sự tồn tại nghiệm của phương trình trên khoảng nhất định.
Định lí 3 còn có một dạng khác như sau:
Cho hàm số $y=f(x)$ liên tục trên [a;b] và thỏa mãn $f(a) . f(b)<0$. Phương trình $f(x)=0$ sẽ có ít nhất 1 nghiệm trong khoảng (a;b).
Dạng 1: Xét tính liên tục của hàm số tại một điểm
Phương pháp giải
Để xét tính liên tục của hàm số tại 1 điểm, ta tiến hành theo các bước sau:
- Bước 1: Tính giá trị $f\left(x_0\right)$
- Bước 2: Tính giá trị $\lim _{x \rightarrow x_0} f(x)$ hoặc $\lim _{x \rightarrow x_0^{+}} f(x), \lim _{x \rightarrow x_0^{+}} f(x)$
- Bước 3: So sánh hai giá trị $\lim _{x \rightarrow x_0} f(x)$ hoặc $\lim _{x \rightarrow x_0^{+}} f(x), \lim _{x \rightarrow x_0^{-}} f(x)$ với $f\left(x_0\right)$ đã tính ở bước 1, rồi kết luận.
- Bước 4: Kết luận dựa theo yêu cầu đề bài.
Ví dụ: Xét tính liên tục tại $x=1$ của hàm số sau đây:
$\left\{\begin{array}{cc}\frac{2-7 x+5 x^2}{x^2-3 x+2} & \text { khi } x \neq 1 \\-3 & \text { khi } x=1\end{array}\right.$
Bài giải
Hàm số đề bài xác định trên $R\ {2}$ có $x=1$ và $f(1)=-3$
Tính giới hạn hàm số tại điểm $x=1$ :
$\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{2-7 x+5 x^2}{x^2-3 x+2}=\lim _{x \rightarrow 1} \frac{(x-1)(5 x-2)}{(x-1)(x-2)}=\lim _{x \rightarrow 1} \frac{5 x-2}{x-2}=-3$
Ta thấy: $\lim _{x \rightarrow 1} f(x)=f(1)=-3$. Suy ra hàm số đề bài liên tục tại $x_0=1$
Dạng 2: Xét tính liên tục, chứng minh hàm số liên tục trên một khoảng, đoạn hoặc tập xác định
Phương pháp giải:
Sử dụng định lí 1 và định lí 2 để giải.
Ví dụ: Chứng minh hàm số sau đây liên tục trên khoảng $(-7 ;+)$
$f(x)=\left\{\begin{array}{l}x^2-x+4, x \geq 2 \\\frac{x-2}{\sqrt{x+7-3}},-7<x<2\end{array}\right.$
Bài giải
- Khi $x>2$ thì $f(x)=x^2-x+4$ là hàm liên tục trên khoảng $(2 ;+\infty)$.
- Khi $-7<\mathrm{x}<2$ thì $f(x)=\frac{x-2}{\sqrt{x+7}-3}$
- Hàm số $\mathrm{y}=\mathrm{x}-2$ là đa thức nên nó liên tục trên khoảng $(-7 ; 2)$
- Hàm số $y=x+7$ là đa thức nên nó liên tục trên khoảng $(-7 ; 2)$
$\Rightarrow$ hàm số $y=\sqrt{x+7}$ liên tục trên khoảng $(-7 ; 2)$
$\Rightarrow$ hàm số $y=\sqrt{x+7}-3$ liên tục trên khoảng $(-7 ; 2)$
- Mặt khác: $\sqrt{x+7}-3 \neq 0, \forall x \in(-7 ; 2)$
Vậy hàm số $f(x)=\frac{x-2}{\sqrt{x+7}-3}$ liên tục trên khoảng $(-7 ; 2)$.
- Khi $x=2$ thì $f(2)=2^2-2+4=6$.
$\begin{aligned}& \lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}\left(x^2-x+4\right)=6 \\& \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} \frac{x-2}{\sqrt{x+7}-3}=\lim _{x \rightarrow 2^{-}} \frac{(x-2)(\sqrt{x+7}+3)}{(\sqrt{x+7}-3)(\sqrt{x+7}+3)} \\& =\lim _{x \rightarrow 2^{-}}(\sqrt{x+7}+3)=\sqrt{2+7}+3=6 \\& \Rightarrow \lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{-}} f(x)=f(2)=6 \\& \Rightarrow \text { Hàm số }f(x) \text { liên tục tại điểm }x=2 .\end{aligned}$
$\Rightarrow$ Hàm số $f(x)$ liên tục tại điểm $x=2$.
Kết luận: Hàm số $f(x)$ liên tục trên khoảng $(-7 ;+\infty)$.
Dạng 3: Tìm điều kiện hàm số liên tục tại 1 điểm
Phương pháp giải
- Bước 1: Tìm điểm xác định $x_0$ của hàm số đề bài. Tính giá trị $f(m)$ với $m=x_0$
- Bước 2: Tính giới hạn của hàm số đề bài tại $x_0$
- Bước 3: Hàm số $f(x)$ liên tục tại $x_0$ khi và chỉ khi $\lim _{x \rightarrow x_0}=f\left(x_0\right)$.
- Bước 4: Kết luận giá trị của m.
Ví dụ: Tìm giá trị m để hàm số sau liên tục tại điểm $x=1$
$f(x)= \begin{cases}\frac{2-7 x+5 x^2}{x-1} & \text { nếu } x \neq 1 \\ -3 m x-1 & \text { nếu } x=1\end{cases}$
Bài giải
Ta xét hàm số xác định tại $x=1$ và $f(x)=-3 m .1-1$.
Tính giới hạn hàm số tại điểm $x=1$
$\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{2-7 x+5 x^2}{x^2-3 x+2}=\lim _{x \rightarrow 1} \frac{(x-1)(5 x-2)}{(x-1)(x-2)}=\lim _{x \rightarrow 1} \frac{5 x-2}{x-2}=-3$
Vậy, hàm số $f(x)$ liên tục tại điểm $x_0=1$ khi:
$\lim _{x \rightarrow 1} f(x)=f(1) \Leftrightarrow-3 m-1 \Leftrightarrow m=-\frac{2}{3}$
Kết luận: $m=\frac{-2}{3}$.
Dạng 4: Tìm điều kiện để hàm số liên tục trên một khoảng đoạn hoặc tập xác định
Phương pháp giải
Ta làm tương tự như dạng 3.
Ví dụ: Tìm giá trị m để hàm số sau đây liên tục trên tập xác định:
$f(x)= \begin{cases}\frac{2-7 x+5 x^2}{x-1} & \text { nếu } x \neq 1 \\ -3 m x-1 & \text { nếu } x=1\end{cases}$
Bài giải
Tập xác định của hàm số là $\mathbb{R}$
Xét trường hợp $x \neq 1$, hàm số có dạng $f(x)=\frac{2-7 x+5 x^2}{x-1}$. $f(x)$ là hàm phân thức hữu tỉ nên tập xác định là $(-\infty ; 1) \cup(1 ;+\infty)$ vì vậy $f(x)$ cũng liên tục trên khoảng $(-\infty ; 1) \cup(1 ;+\infty)$
Xét trường hợp $x=1$ thì ta có $f(1)=-3 m-1$ :
$\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{2-7 x+5 x^2}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)(5 x-2)}{x-1}=3$
Khi đó, hàm $\mathrm{f}(\mathrm{x})$ liên tục tại điểm $x_0=1$ khi và chỉ khi:
$\lim _{x \rightarrow 1} f(x)=f(1) \Leftrightarrow 3 m-1=3 \Leftrightarrow m=-\frac{4}{3}$
Kết luận: $m=-\frac{4}{3}$.
Dạng 5: Ứng dụng tính liên tục của hàm số để chứng minh phương trình có nghiệm
Phương pháp giải
Sử dụng định lí 3 để giải.
Ví dụ 1: Chứng minh rằng phương trình $3 x^3+2 x-2=0$ có nghiệm trong $(0 ; 1)$.
Bài giải
Hàm số đã cho là hàm đa thức nên $f(x)$ liên tục trên $\mathbb{R}$. Suy ra, $f(x)$ cũng liên tục trên đoạn $[0 ; 1]$.
Ta có: $f(0) \cdot f(1)=(-2) \cdot(3)=-6<0$
Do vậy, có ít nhất 1 số c trong $(0 ; 1)$ sao cho $f(c)=0$. Hay nói cách khác, phương trình $f(x)=0$ có ít nhất 1 nghiệm thuộc $(0 ; 1)$.
Ví dụ 2: Chứng minh rằng, phương trình $2 x^3-6 x^2+5=0$ trong khoảng $(-1 ; 3)$ có 3 nghiệm phân biệt.
Hàm số đề bài liên tục trên $R$, do đó $f(x)$ liên tục trên các đoạn [-1;0], [0;2], [2;3].
Ta thấy: $f(-1)=-3, f(0)=5, f(2)=-3, f(3)=5$. Từ đó:
$\begin{aligned}& f(-1) \cdot f(0)<0 \\& f(0) \cdot f(2)<0 \\& f(2) \cdot f(3)<0\end{aligned}$
Vì vậy, phương trình đã cho có nghiệm trong các khoảng $(-1 ; 0),(0 ; 2)$ và $(2 ; 3)$.
Vậy phương trình có 3 nghiệm phân biệt thuộc khoảng $(-1;3)$.
Như vậy, Học là Giỏi đã hệ thống lại cách vẽ đồ thị hàm số bậc nhất và các bài toán liên quan, Học là Giỏi mong rằng với việc chia sẻ kiến thức ở trên các bạn sẽ làm tốt được dạng bài tập này nhé!
Xem thêm:
[Tổng hợp chi tiết] Bảng công thức đạo hàm của các hàm số
Bí kíp học tốt toán lớp 11 Kết nối tri thức với cuộc sống
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Bí kíp chinh phục các hằng đẳng thức mở rộng
Thứ tư, 14/8/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Thể thơ song thất lục bát trong văn chương Việt Nam
Thứ ba, 28/5/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ ba, 26/11/2024 09:39 AM
Tứ giác nội tiếp là gì? Tính chất của tứ giác nội tiếp
Tứ giác nội tiếp là một trong những khái niệm quan trọng trong hình học lớp 9, đặc biệt khi tìm hiểu về các mối quan hệ giữa các điểm và đường tròn. Hãy cùng gia sư online Học là Giỏi khám phá tứ giác nội tiếp này là gì và chúng có các tính chất như thế nào nhé.
Thứ ba, 26/11/2024 04:35 AM
Khám phá lý thuyết về cung chứa góc toán 9
Khái niệm cung chứa góc ở trong toán lớp 9 đóng vai trò quan trọng khi tìm hiểu các tính chất và bài toán liên quan đến hình tròn. Cùng gia sư online Học là Giỏi đi sâu vào khái niệm và tính chất về cung chứa góc của đường tròn nhé.
Thứ hai, 25/11/2024 09:30 AM
Tìm hiểu góc có đỉnh ở bên trong đường tròn, bên ngoài đường tròn
Góc có đỉnh nằm bên trong đường tròn hoặc bên ngoài đường tròn mang đến những đặc điểm và tính chất riêng. Việc tìm hiểu về các loại góc này hỗ trợ rất nhiều trong việc giải quyết các bài toán hình học phức tạp. Hãy cùng gia sư online Học là Giỏi khám phá những khái niệm và định lý về góc có đỉnh nằm bên trong và bên ngoài đường tròn nhé.
Thứ sáu, 22/11/2024 09:18 AM
Chinh phục kiến thức về góc nội tiếp
Trong hình tròn, góc nội tiếp là một chủ đề cơ bản khi chúng có nhiều tính chất cần lưu ý trong hình học phẳng. Đây là khái niệm giúp chúng ta hiểu thêm các định lý liên quan đến đường tròn. Cùng gia sư online Học là Giỏi tìm hiểu về góc nội tiếp có gì đặc biệt và những nội dung quan trọng trong bài học này nhé.
Thứ ba, 19/11/2024 10:06 AM
Khám phá mối liên hệ giữa cung và dây
Mối liên hệ giữa cung và dây cung của đường tròn là chủ đề quan trọng trong chương trình hình học lớp 9. Dù chúng ta đã quá quen thuộc với hình ảnh những đường tròn, ít ai biết rằng cung và dây cung tạo sự liên kết mật thiết trong hình tròn. Hãy cùng gia sư online Học là Giỏi tìm hiểu rõ mối quan hệ này có gì đặc biệt nhé.
Thứ hai, 18/11/2024 10:07 AM
Tổng hợp kiến thức vị trí tương đối của hai đường tròn
Vị trí tương đối của hai đường tròn là kiến thức quan trọng để xét các tính chất của 2 đường tròn này có mối quan hệ gì với nhau. Hãy cùng gia sư online Học là Giỏi khám phá các trường hợp cơ bản về vị trí tương đối của hai đường tròn này nhé.