Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức

Cách vẽ đồ thị hàm số bậc nhất và các bài toán liên quan

schedule.svg

Thứ tư, 15/5/2024 07:04 AM

Tác giả: Admin Hoclagioi

Vẽ đồ thị hàm số bậc nhất và các bài toán liên quan là dạng toán không thể thiếu trong các bài thi lớp 8. Vì vậy để thành thạo dạng toán này, hãy cùng Học là Giỏi ôn lại nhé!

Mục lục [Ẩn]

Đồ thị hàm số bậc nhất

Hàm số bậc nhất $y = ax+b$ với $a \neq 0$ có đồ thị là một đường thẳng.

- Cắt trục tung tại điểm có tung độ bằng b;

- Song song với đường thẳng $y=ax$ nếu $b \neq 0$; trùng với $y=ax$ nếu $b=0$.

Kí hiệu là $d: y=a x+b$.

Cách vẽ đồ thị hàm số bậc nhất

Xét đường thẳng $d: y=ax+b$ với $a \neq 0$

- Nếu $b=0$ ta có $d: y=a x$ đi qua gốc tọa độ $O(0 ; 0)$ và điểm $A(1 ; a)$

- Nếu b0 thì d đi qua hai điểm $A(0 ; b)$ và $B\left(\frac{-b}{a} ; 0\right)$.

Cách vẽ đồ thị hàm số bậc nhất

Chú ý: 

- Trục tung là đường thẳng $x=0$.

- Trục hoành là đường thẳng $y=0$.

Các bài toán liên quan

Dạng 1: Vẽ đồ thị hàm số

Phương pháp giải: Thực hiện cách vẽ đồ thị hàm số bậc nhất ở trên.

Ví dụ: Vẽ đồ thị các hàm số sau:

a) $y=2 x$

b) $y=x-1$

Bài giải

a) Xét đường thẳng $d: y=2 x$ có $b=0$

Vậy $d$ đi qua gốc tọa độ $O(0 ; 0)$ và điểm $A(1 ; 2)$

Ta có đồ thị như hình vẽ

y = 2x

b) Xét đường thẳng $d: y=x-1$ có $b=-1 \neq 0$

Cho $y=0 \Rightarrow x=1 \Rightarrow A(1 ; 0)$

Cho $x=0 \Rightarrow y=-1 \Rightarrow B(0 ;-1)$

Vậy đường thẳng $d$ đi qua hai điểm $A$ và $B$ có đồ thị như hình vẽ

y=x-1

Dạng 2: Xác định điểm thuộc hay không thuộc đồ thị hàm số

Phương pháp giải: Cho hàm số $y=a x+b$ và $M(m, n)$ với $a \neq 0$

Cách 1: Ta biểu diễn điểm $M$ và đồ thị hàm số $d: y=a x+b$ trên cùng một hệ trục tọa độ

- Nếu điểm $M$ thuộc đồ thị hàm số thì điểm đó nằm trên đường thẳng $d$

- Nếu điểm $M$ không thuộc đồ thị hàm số thì điểm $M$ không nằm trên đường thẳng $d$.

Cách 2: Ta thay tọa độ điểm $M$ vào hàm số

- Nếu $a m+b=n$ thì $M$ thuộc đồ thị hàm số

- Nếu $a m+b \neq n$ thì $M$ không thuộc đồ thị hàm số.

Ví dụ: Xét các điểm $M(2 ; 1) ; N(3 ;-2)$ có thuộc đồ thị hàm số $y=x-5$ hay không?

Bài giải

- Xét điểm $M(2 ; 1)$

Thay $x=2$ vào hàm số ta có:

$y=2-5=-3 \neq 1$ nên điểm $M$ không thuộc đồ thị hàm số.

- Xét điểm $N(3 ;-2)$

Thay $x=3$ vào hàm số ta có:

$y=3-5=-2$ nên điểm $N$ thuộc đồ thị hàm số.

Dạng 3: Xác định hàm số bậc nhất khi biết hệ số góc và điểm đi qua

Phương pháp giải: 

- Bước 1: Gọi hàm số bậc nhất có dạng $y=ax+b$ với a là hệ số góc.

- Bước 2: Thay tọa độ điểm mà đồ thị đi qua để tìm b.

Ví dụ: Tìm hàm số bậc nhất có đồ thị là đường thẳng có hệ số góc a = 2 và đi qua điểm (0;1).

Bài giải

Gọi Hàm số bậc nhất có dạng $y=2 x+b$.

Đồ thị hàm số đi qua điểm $(0 ; 1)$ nên $1=2 \cdot 0+b$ hay $b=1-2 \cdot 0=1$.

Vậy hàm số cần tìm là $y=2x+1$.

Xem thêm:
Lấy lại gốc hằng đẳng thức số 3 nào!

Bài tập đồ thị hàm số bậc nhất

Dạng cơ bản

Bài tập 1:

Cho hàm số y = 2x + 3.

Xác định điểm cắt của đồ thị với trục tung và trục hoành.

Vẽ đồ thị của hàm số trên mặt phẳng tọa độ.

Đáp án chi tiết:

Điểm cắt với trục tung: Cho x = 0, y = 2(0) + 3 = 3. Điểm là (0,3).

Điểm cắt với trục hoành: Cho y=0, 0 = 2x + 3 ⇒ x=32x = -\frac{3}{2}​. Điểm là (32,0)\left(-\frac{3}{2}, 0\right).

Vẽ đồ thị: Lấy hai điểm (0,3) và (32,0)\left(-\frac{3}{2}, 0\right), nối hai điểm này bằng một đường thẳng.

Bài tập 2:

Cho hàm số y = −x + 1.

Tìm hệ số góc và hệ số tự do.

Vẽ đồ thị hàm số trên mặt phẳng tọa độ.

Đáp án chi tiết:

Hệ số góc a = −1, hệ số tự do b = 1.

Điểm cắt trục tung: Cho x = 0, y = 1 ⇒ Điểm (0,1).

Điểm cắt trục hoành: Cho y = 0, 0 = −x + 1 ⇒ x = 1 ⇒ Điểm (1,0).

Vẽ đồ thị qua hai điểm (0,1) và (1,0).

Bài tập 3:

Cho hàm số y = 3x − 4. Tìm giá trị của y khi x = 2 và x = −1.

Đáp án chi tiết:

Khi x = 2: y = 3(2) − 4 = 6 − 4 = 2.

Khi x = −1: y = 3(−1) − 4 = −3 − 4 = −7.

Kết quả: y = 2 khi x = 2, và y = −7 khi x = −1.

Dạng nâng cao

Bài tập 4:

Cho hai hàm số y1=2x+1y_1 = 2x + 1 và y2=x+4y_2 = -x + 4

Tìm tọa độ giao điểm của hai đồ thị.

Vẽ đồ thị hai hàm số trên cùng mặt phẳng tọa độ.

Đáp án chi tiết:

Phương trình giao điểm: 2x + 1 = −x + 4.

Giải: 2x + x = 4 − 1 ⇒ 3x = 3 ⇒ x = 1.

Tìm y: y = 2(1) + 1 = 3.

Tọa độ giao điểm: (1,3).

Hàm y1=2x+1y_1 = 2x + 1​:
Điểm cắt trục tung (0,1), điểm cắt trục hoành (12,0)(-\frac{1}{2}, 0).

Hàm y2=x+4y_2 = -x + 4:
Điểm cắt trục tung (0,4), điểm cắt trục hoành (4,0).

Vẽ đồ thị của hai hàm qua các điểm trên và giao tại (1,3).

Bài tập 5:

Cho hàm số y = ax + b, biết rằng đồ thị đi qua hai điểm A(1,2) và B(3,6). Tìm a và b.

Đáp án chi tiết:

Phương trình y = ax + b thỏa mãn:

Với A(1,2): 2 = a(1) + b ⇒ a + b = 2.

Với B(3,6): 6 = a(3) + b ⇒ 3a + b= 6.

Giải hệ:

a + b = 2.

3a + b = 6.

Trừ từng vế: (3a + b) − (a + b) = 6 − 2 ⇒ 2a = 4 ⇒ a = 2.
Thay vào a + b =2

2 + b = 2 ⇒ b = 0.

Kết quả: 

a = 2, b = 0, phương trình: y = 2x.

Bài tập 6:

Cho hàm số y = x + 2. Tìm diện tích tam giác tạo bởi đồ thị hàm số và hai trục tọa độ.

Đáp án chi tiết:

Điểm cắt trục tung: (0,2).

Điểm cắt trục hoành: (−2,0).

Diện tích tam giác:

Tam giác có đáy AB = 2 (từ −2 đến 0) và chiều cao h=2.

S=12×AB×h=12×2×2=2S = \frac{1}{2} \times AB \times h = \frac{1}{2} \times 2 \times 2 = 2.

Kết quả: Diện tích tam giác là 2 đơn vị diện tích.

Bài tập 7:

Tìm m để đồ thị hàm số y = mx − 3 đi qua điểm P(2,5).

Đáp án chi tiết:

Thay tọa độ P(2,5) vào phương trình:
5 = m(2 ) − 3 ⇒ 5 = 2m − 3.

Giải: 2m = 8 ⇒ m = 4.

Kết quả: m = 4.

Kết luận

Như vậy, bài học trên đã hệ thống lại cách vẽ đồ thị hàm số bậc nhất và các bài toán liên quan, Trung tâm gia sư online Học là Giỏi mong rằng với việc chia sẻ kiến thức ở trên các bạn sẽ làm tốt được dạng bài tập này nhé!

Chủ đề:

Đăng ký học thử ngay hôm nay

Để con học sớm - Ôn sâu và nhận ưu đãi học phí!

Bài viết liên quan

Bí quyết luyện toán ôn thi vào 10 dễ đạt điểm cao
schedule

Thứ hai, 18/8/2025 08:35 AM

Bí quyết luyện toán ôn thi vào 10 dễ đạt điểm cao

Toán ôn thi vào 10 luôn là nỗi lo lớn của nhiều học sinh khi kỳ thi chuyển cấp. Đây là môn học đòi hỏi tư duy logic, khả năng phân tích. Nhiều em dù chăm chỉ học nhưng vẫn gặp khó khăn trong việc hệ thống kiến thức và làm quen với dạng đề thi. Học là GIỏi sẽ giúp các em có định hướng rõ ràng, tự tin hơn trên hành trình đạt điểm cao và chinh phục môn toán ôn thi vào 10 trong bài viết này nhé.

Hướng dẫn áp dụng dấu hiệu chia hết cho 11 hiệu quả
schedule

Thứ sáu, 8/8/2025 03:59 AM

Hướng dẫn áp dụng dấu hiệu chia hết cho 11 hiệu quả

Trong toán học, ngoài việc thực hiện phép chia thông thường còn có những mẹo giúp ta nhận biết nhanh dấu hiệu chia hết cho 11. Học là Giỏi sẽ giúp bạn hiểu rõ quy tắc, cách vận dụng và thực hành qua các bài tập cơ bản đến nâng cao giúp bạn nắm chắc kiến thức và tự tin khi gặp dạng bài này nhé.

Cách nhận biết dấu hiệu chia hết cho 8 đơn giản
schedule

Thứ năm, 7/8/2025 09:46 AM

Cách nhận biết dấu hiệu chia hết cho 8 đơn giản

Dấu hiệu chia hết cho 8 là một kiến thức xuất hiện trong các dạng đề kiểm tra hoặc ở nhiều bài tập. Học là Giỏi sẽ giúp các bạn nắm vững các dạng toán về dấu hiệu chia hết cho 8​ để dễ dàng thực hiện phép chia phức tạp nhé.

Tổng hợp kiến thức về dấu hiệu chia hết cho 6 cấp 2
schedule

Thứ tư, 6/8/2025 06:57 AM

Tổng hợp kiến thức về dấu hiệu chia hết cho 6 cấp 2

Trong quá trình tính toán cơ bản, việc nắm vững dấu hiệu chia hết cho 6 giúp học sinh rút gọn phép chia nhanh hơn trong việc giải toán có lời giải, đặc biệt là các bài toán tìm số hoặc phân tích số. Học là Giỏi sẽ giúp các bạn học sinh nắm được dấu hiệu chia hết cho 6 và các dạng bài tập qua bài viết dưới đây nhé.

Mẹo học nhanh dấu hiệu chia hết cho 7 cho học sinh
schedule

Thứ ba, 5/8/2025 07:37 AM

Mẹo học nhanh dấu hiệu chia hết cho 7 cho học sinh

Trong quá trình học toán, việc nhận biết dấu hiệu chia hết cho 7 là một kỹ năng cần thiết nhưng thường bị bỏ sót. Học là Giỏi sẽ giúp bạn nắm rõ một số phương pháp đặc biệt giúp bạn hoàn toàn có thể xác định dấu hiệu chia hết cho 7 thông qua bài viết này nhé.

Cách xác định dấu hiệu chia hết cho 2, 3, 5, 9 chính xác nhất
schedule

Thứ ba, 5/8/2025 03:01 AM

Cách xác định dấu hiệu chia hết cho 2, 3, 5, 9 chính xác nhất

Hiểu và vận dụng đúng dấu hiệu chia hết cho 2, 3, 5, 9 sẽ giúp học sinh rút gọn phép chia nhanh chóng và chính xác. Học là Giỏi sẽ giúp bạn hiểu rõ từng dấu hiệu và biết cách xác định các dấu hiệu chia hết của từng số trong bài viết này nhé.

message.svg zalo.png