Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Tính chất đường phân giác trong tam giác là kiến thức quan trọng trong hình học và có nhiều ứng dụng trong thực tế. Định lý về đường phân giác mở ra những cách tiếp cận giải quyết các bài toán phức tạp về tỉ lệ và khoảng cách, giúp bạn hiểu sâu hơn về mối quan hệ giữa các cạnh của tam giác. Hãy cùng gia sư online Học là Giỏi khám phá tính chất đặc biệt của đường phân giác trong tam giác nhé.
Mục lục [Ẩn]
Đường phân giác trong tam giác là kiến thức quan trọng để giải các bài toán liên quan đến các dạng tỉ lệ hình học. Dưới đây, chúng ta sẽ tìm hiểu về định lý đường phân giác và cách chứng minh định lý này nhé.
Đường phân giác trong tam giác là đường thẳng xuất phát từ một đỉnh của tam giác và chia góc tại đỉnh đó thành hai góc bằng nhau. Đường phân giác có một tính chất đặc biệt liên quan đến các cạnh của tam giác. Cụ thể, định lý đường phân giác phát biểu rằng:
“Trong một tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề của góc đó.”
Ví dụ tam giác ABC có đường phân giác AD (D là điểm trên cạnh BC),thì:
Định lý này giúp chúng ta hiểu rõ hơn về mối quan hệ giữa các đoạn thẳng trong tam giác khi có đường phân giác.
Ta vẽ đường thẳng đi qua điểm B và song song với đường AD, cắt đường thẳng AC tại điểm E.
Theo giả thiết, AD là phân giác của góc A nên .
Do EB // AD, ta có: (hai góc so le trong) và (hai góc đồng vị).
Suy ra ( ở cmt)
Vậy tam giác AEB là tam giác cân tại A, suy ra AE = AB. (1)
Áp dụng định lý Thales cho tam giác CEB, ta có:
Từ (1) và (2), suy ra:
Vậy là định lý được chứng minh.
Lưu ý: Trong tam giác ABC, nếu D là một điểm trên đoạn thẳng BC và thỏa mãn , thì đường thẳng AD sẽ là đường phân giác của góc A.
Định lý đường phân giác giúp chúng ta giải quyết nhiều bài toán liên quan đến tỉ lệ và tính toán trong hình học. Với định lý này, ta có thể chia tam giác thành các phần tỉ lệ mà không cần đo đạc từng đoạn thẳng, giúp bài toán trở nên trực quan hơn rất nhiều.
Khi nhắc đến hình học, bạn sẽ thấy rằng mỗi định lý đều có giá trị riêng, định lý đường phân giác giúp chúng ta hiểu rõ hơn về cách các yếu tố trong tam giác liên kết với nhau. Vậy định lý đường phân giác có những ứng dụng gì và tại sao nó lại quan trọng?
Định lý đường phân giác chứng minh rằng đường phân giác của một góc trong tam giác chia cạnh đối diện thành hai đoạn thẳng có tỉ lệ tương ứng với hai cạnh kề của góc. Điều này giúp bạn tính toán nhanh chóng mà không cần dùng các công thức phức tạp.
Định lý đường phân giác giúp bạn tính toán độ dài của các đoạn thẳng trong tam giác khi chỉ biết một số thông tin nhất định. Giả sử bạn biết chiều dài của hai cạnh kề và tỉ lệ mà đường phân giác chia cạnh còn lại, bạn hoàn toàn có thể tính ra độ dài của từng đoạn thẳng. Đây là cách để bạn biến những thông tin nhỏ thành công cụ giải các bài toán lớn hơn.
Trong nhiều bài toán, chúng ta cần chứng minh mối quan hệ giữa các đoạn thẳng hay tỉ lệ trong tam giác, và định lý đường phân giác thường đóng vai trò là cầu nối. Nó giúp bạn rút ra được các kết luận dựa trên mối quan hệ tỉ lệ giữa các cạnh, làm bài toán trở nên dễ tiếp cận hơn.
Khi xây dựng hoặc thiết kế một công trình, việc chia các không gian hay các bức tường theo những tỉ lệ hài hòa là rất quan trọng để đạt được sự cân bằng về mặt thẩm mỹ và công năng. Kiến trúc sư và nhà thiết kế có thể sử dụng nguyên tắc tương tự định lý đường phân giác để xác định các tỉ lệ trong thiết kế và đảm bảo rằng mọi phần của công trình đều kết nối một cách hài hòa và logic.
Để nắm rõ kiến thức cơ bản trên thì phải luyện tập thường xuyên với các dạng bài tập. Dưới đây là các dạng cơ bản và nâng cao mà bạn có thể tham khảo.
Bài 1: Tìm độ dài x trong hình bên, biết rằng AM là đường phân giác của góc A.
Giải
Tìm độ dài x trong hình bên, biết rằng AM là đường phân giác của góc A.
Hướng dẫn giải
Trong tam giác ABC, AM là đường phân giác của góc A.
Theo định lý đường phân giác, ta có:
hay
Suy ra:
Bài 2: Dựa vào hình vẽ sau đây:
a) Tính tỉ số .
b) Tìm giá trị của khi .
Giải
a) Quan sát hình, ta thấy AD là đường phân giác của góc A trong tam giác ABC.
Áp dụng tính chất của đường phân giác trong tam giác, ta có:
Do đó:
b) Khi , ta có:
Bài 3: Xét tam giác ABC với AB=6 cm, AC=9 cm, BC=10 cm. Gọi AD là đường phân giác trong và AE là đường phân giác ngoài. Hãy tính độ dài các đoạn DB và EB.
Giải
Vì AD là đường phân giác trong của tam giác ABC, nên theo tính chất đường phân giác ta có:
Vì AE là đường phân giác ngoài của tam giác ABC, nên:
Từ (1) và (2), suy ra:
Áp dụng tỷ lệ này, ta tính được DB và EB như sau:
Với , ta có (do DC+DB=BC). Do đó:
Với , ta có (do EC-EB=BC) ⇒ .
Vậy độ dài các đoạn thẳng là và .
Xem thêm:
Tổng hợp kiến thức về định lý Talet trong Toán lớp 8
Khám phá các tính chất đường trung bình của tam giác
Như vậy, tính chất đường phân giác trong tam giác là kiến thức cần thiết giải quyết nhiều bài toán trong hình học và cả những bài toán trong cuộc sống thực. Định lý này giúp chúng ta tiết kiệm thời gian và công sức trong tính toán, đồng thời cho ta thấy về sự cân đối và hài hòa trong cấu trúc hình học. Trung tâm gia sư online Học là Giỏi hi vọng bạn đã hiểu và nắm bắt được kiến thức của định lý này và sẽ áp dụng nó hiệu quả trong các bài toán của mình.
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Bí kíp chinh phục các hằng đẳng thức mở rộng
Thứ tư, 14/8/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Thể thơ song thất lục bát trong văn chương Việt Nam
Thứ ba, 28/5/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ hai, 28/4/2025 06:51 AM
Bí quyết cách học giỏi toán mọi học sinh cần biết
Toán học luôn là một môn học quan trọng trong chương trình giáo dục và cả trong cuộc sống hàng ngày. Tuy nhiên, không phải ai cũng dễ dàng nắm vững được các kiến thức và kỹ năng cần thiết để học giỏi môn toán. Hãy cùng gia sư online Học là Giỏi cung cấp những cách học giỏi toán đơn giản, giúp bạn tự tin và thành công trong việc học tập.
Thứ sáu, 25/4/2025 07:16 AM
Mẹo học bảng nhân 5 cực dễ hiểu cho học sinh tiểu học
Bảng nhân 5 là một phần không thể thiếu trong hệ thống bảng cửu chương hỗ trợ học sinh ghi nhớ và vận dụng phép nhân với số 5 một cách nhanh chóng. Hôm nay gia sư online Học là Giỏi sẽ cùng bạn khám phá chi tiết bảng nhân 5 nhé.
Thứ ba, 22/4/2025 03:21 AM
Bí quyết tìm gia sư toán lớp 9 ở Hà Nội uy tín
Lớp 9 là dấu mốc quan trọng quyết định tương lai học tập của học sinh vào cấp 3, đặc biệt là tại Hà Nội, nơi có môi trường giáo dục cạnh tranh khốc liệt. Trong bối cảnh ấy, việc tìm gia sư toán lớp 9 ở Hà Nội trở thành nhu cầu cấp thiết với nhiều phụ huynh nhằm giúp con tự tin bước vào kỳ thi chuyển cấp. Gia sư online Học là Giỏi sẽ cùng bạn tìm hiểu những lưu ý gì khi tìm gia sư toán lớp 9 ở Hà nội nhé.
Thứ hai, 21/4/2025 09:10 AM
Giải pháp tìm gia sư toán lớp 6 tại Hà Nội hiệu quả
Lớp 6 là bước ngoặt quan trọng khi con bắt đầu làm quen với tư duy Toán học nâng cao và chương trình đổi mới. Vì vậy, tìm gia sư Toán lớp 6 đang trở thành giải pháp thiết thực giúp học sinh tự tin hơn ngay từ những bài toán đầu tiên. Gia sư online Học là Giỏi sẽ cho bạn cái nhìn tổng thể trong việc tìm gia sư toán lớp 6 tại Hà Nội ở bài viết dưới đây nhé.
Thứ ba, 15/4/2025 10:22 AM
Các công thức và cách tính xác suất từ cơ bản đến nâng cao
Trong toán học và cuộc sống, việc dự đoán một sự kiện có xảy ra hay không luôn là điều khiến con người tò mò. Các công thức và cách tính xác suất sẽ giúp chúng ta đo lường mức độ xảy ra của một biến cố, từ những trò chơi may rủi cho đến các quyết định trong đời sống thực tế. Gia sư online Học là Giỏi giúp bạn hiểu rõ các công thức và cách tính xác suất từ những khái niệm cơ bản đến các công thức ứng dụng cao nhé.
Thứ sáu, 11/4/2025 10:03 AM
Tổng hợp các ký hiệu toán học cần ghi nhớ
Trong toán học, ký hiệu đóng vai trò giúp con người biểu đạt những khái niệm trừu tượng một cách logic và hệ thống. Gia sư online Học là Giỏi sẽ cung cấp các ký hiệu toán học ở trong bài viết để bạn có thể nắm bắt và biết cách sử dụng hơn nhé.