Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Trong hình học, các yếu tố liên quan đến hình tam giác và hình thang luôn đóng vai trò quan trọng trong việc giải quyết các bài toán từ cơ bản đến nâng cao. Một trong những khái niệm đáng chú ý là đường trung bình của tam giác, hình thang. Đường trung bình không chỉ giúp chia tỉ lệ các cạnh một cách cân đối mà còn cung cấp nhiều tính chất đặc biệt về sự song song và tỷ lệ của các cạnh còn lại. Hãy cùng gia sư online Học là Giỏi khám phá những định lý liên quan đến đường trung bình và áp dụng vào việc giải các bài toán nhé.
Mục lục [Ẩn]
Đường trung bình là một phương pháp toán học hữu ích giúp bạn giải quyết nhiều bài toán khác nhau. Từ tam giác cho đến hình thang, các định lý về đường trung bình đều mang lại những cách tiếp cận mới mẻ và dễ hiểu hơn. Dưới đây là kiến thức cần nhớ về đường trung bình.
Trong toán học, đường trung bình của tam giác là đoạn thẳng nối hai trung điểm của hai cạnh bất kỳ trong tam giác. Mỗi tam giác có ba cạnh nên sẽ có ba đường trung bình, và mỗi đường trung bình sẽ song song với cạnh còn lại, đồng thời tạo ra các cặp cạnh có tỉ lệ với nhau.
Đặc biệt, đối với các tam giác cân hoặc tam giác đều, đường trung bình có thể bằng nửa độ dài của cạnh còn lại.
Tính chất 1: Trong một tam giác, nếu một đường thẳng cắt qua một cạnh và song song với cạnh thứ hai, thì nó sẽ đi qua trung điểm của cạnh thứ ba.
Chứng minh:
Gọi M là trung điểm của BC.
Tam giác ABC có AD /AB = AE /AC = 1/2 , suy ra DE // BC (định lí Thales đảo).
Tương tự ta chứng minh được EM // AB. Tứ giác DEMB có DE //BM và EM // DB
Nên tứ giác DEMB là hình bình hành (dấu hiệu nhận biết hình bình hành), suy ra DE = BM = 1/2 BC .
Vậy DE // BC; DE = 1/2 BC
Chú ý: Trong một tam giác, nếu một đường thẳng đi qua trung điểm của một cạnh và song song với cạnh thứ hai thì nó đi qua trung điểm của cạnh thứ ba.
Tính chất 2: Đường trung bình của tam giác luôn song song với cạnh thứ ba và có độ dài bằng một nửa cạnh đó.
Trong trường hợp đặc biệt của tam giác vuông, nếu bạn nối hai trung điểm của hai cạnh góc vuông, đường trung bình sẽ song song với cạnh huyền. Còn nếu bạn nối trung điểm của một cạnh góc vuông với trung điểm của cạnh thường, thì đường trung bình sẽ vuông góc với một cạnh góc vuông.
Đường trung bình của hình thang là đoạn thẳng nối trung điểm hai cạnh bên của hình thang.
Tính chất 3: Trong một hình thang, nếu một đường thẳng đi qua trung điểm của một cạnh bên và song song với hai đáy, thì đường thẳng đó sẽ đi qua trung điểm của cạnh bên còn lại.
Tính chất 4: Đường trung bình của hình thang song song với hai đáy và có độ dài bằng một nửa tổng độ dài của hai đáy.
Ví dụ: Cho hình thang ABCD có E là trung điểm của AD, F là trung điểm của BC và AB = 4( cm ) và CD = 7( cm ). Tính độ dài đoạn EF.
Ta có hình thang ABCD có E là trung điểm của AD, F là trung điểm của BC
⇒ EF là đường trung bình của hình thang.
Áp dụng định lý 2, ta có EF = (AB + CD)/2
⇒ EF = (AB + CD)/2 = (4 + 7)/2 = 5,5( cm ).
Đương trung bình có nhiều dạng bài tập khá thú vị trong chương trình hình học lớp 8, dưới đây là hai dạng bài tập cơ bản và nâng cao.
Bài 1: Cho tam giác ABC, điểm D thuộc cạnh AC sao cho AD = 1/2 DC. Gọi M là trung điểm của BC, I là giao điểm của BD và AM. Chứng minh: AI = IM.
Gọi E là trung điểm của DC.
Trong ΔBDC, ta có:
M là trung điểm của BC (giả thiết).
E là trung điểm của CD (ta gọi).
Nên ME là đường trung bình của ∆BCD.
⇒ ME // BD (tính chất đường trung bình tam giác).
Suy ra: DI // ME.
Lại có: AD = ½ DC (giả thiết).
DE = 1/2 DC (vì E là trung điểm của DC).
Suy ra AD = DE nên D là trung điểm của AE.
Xét tam giác AME có D là trung điểm của AE và DI // ME (cmt).
Suy ra I là trung điểm của AM (tính chất đường trung bình của tam giác)
Vậy AI = IM
Bài 2: Cho ∆ABC( AB > AC ) có = . Trên cạnh AB lấy điểm D sao cho BD = AC. Gọi E,F lần lượt là trung điểm của cạnh AD,BC. Tính = ?
Do E,F lần lượt là trung điểm của cạnh AD,BC theo giả thiết nên ta vẽ thêm I là trung điểm của CD nên EI, FI theo thứ tự lần lượt là đường trung bình của tam giác ACD và BCD.
Đặt BD = AC = 2a
Áp dụng định lý đường trung bình của hai tam giác trên ta có:
( 1 ) FI//BD
( 2 ) FI = a
( 3 ) EI = a
( 4 ) EI//AC
Từ ( 1 ) ⇒ = (vì so le trong) ( 5 )
Từ ( 2 ) và ( 3 ) ⇒ FI = EI nên = (vì trong tam giác, đối diện với hai cạnh bằng nhau là hai góc bằng nhau) ( 6 )
Từ ( 5 ) và ( 6 ) ⇒ =
Từ ( 4 ) ⇒ = = (vì đồng vị)
Mà = 2 ⇒ =
Bài 3: Cho ∆ABC, đường trung tuyến AM. Gọi D là trung điểm của AM, E là giao điểm của BD và AC, F là trung điểm của EC. Tính tỉ số AE/EC.
Xét ∆BEC có:
M là trung điểm của BC;
F là trung điểm của EC.
Do đó, MF là đường trung bình của ∆BEC.
Suy ra MF // BE.
Xét ∆AMF có:
D là trung điểm của AM;
DE // MF (do MF // BE).
Do đó, DE là đường trung bình của ∆AMF.
Suy ra E là trung điểm của AF nên AE = EF.
Mà EF = FC = 1/2 EC (do F là trung điểm của EC)
Do vậy, AE = EF = FC = 1/2 EC.
Suy ra AE /EC = 1/2 .
Bài 4: Cho hình thang ABCD ( AB//CD ) có AB = 2cm,CD = 5cm,AD = 7cm. Gọi E là trung điểm của BC. Tính = ?
Đặt = α , = β ⇒ = α + β
Do E là trung điểm của BC theo giả thiết vẽ I là trung điểm của AD thì AI = ID = AD/2 = 3,5( cm ). ( 1 )
Ta có EI là đường trung bình của hình thang ABCD.
Áp dụng định lý đường trung bình của hình thang ABCD ta có:
IE = (AB + CD)/2 = (2 + 5)/2 = 3,5( cm ) ( 2 )
Từ ( 1 ) và ( 2 ) ta có:
IA = IE
IE = ID
A1 = E1 = α
D2 = E2 = β
(vì trong tam giác, đối diện với hai cạn bằng nhau là hai góc bằng nhau)
+ Xét tam giác ADE có =
Hay α + α + β + β = 2( α + β ) = ⇒ α + β =
Do α + β = nên AEDˆ = .
Bài 5: Cho ∆ABC cân tại A, M là trung điểm của BC. Kẻ tia Mx song song với AC cắt AB tại E và tia My song song với AB cắt AC tại F. Chứng minh:
a) EF là đường trung bình của ∆ABC;
b) AM là đường trung trực của EF.
Bài 6: Cho ∆ABC vuông tại A, đường cao AH. Gọi E là trung điểm của HC, F là trung điểm của AH. Chứng minh BF ⊥ AE.
Bài 7: Cho hình thang ABCD có đáy AB, CD. Gọi E, F, theo thứ tự là trung điểm của AD, BC, AC. Chứng minh E, F, I thẳng hàng.
Bài 8: Cho tứ giác ABCD. Gọi E, F, I theo thứ tự là trung điểm của AD, BC, AC. Chứng minh EI // CD; IF // AB.
Xem thêm:
Khám phá kiến thức về hình thang lớp 8
Dấu hiệu nhận biết hình thang cân
Đường trung bình trong tam giác và hình thang là một khái niệm ẩn chứa nhiều tính chất hình học thực tiễn, giúp rút ngắn và đơn giản hóa các bài toán liên quan đến tỷ lệ và song song. Qua bài học trên, trung tâm gia sư online Học là Giỏi hi vọng kiến thức trên giúp người học giải quyết những bài toán từ cơ bản đến nâng cao một cách hiệu quả và logic.
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
STEM là gì? Lợi ích và ứng dụng trong giáo dục hiện đại
Thứ ba, 12/8/2025Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Bảng tuần hoàn nguyên tố hóa học theo chương trình mới
Thứ hai, 15/4/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ năm, 28/8/2025 04:23 AM
Tia là gì? Khái niệm cơ bản và tính chất trong hình học
Trong hình học, một trong những khái niệm mà học sinh cần nắm vững chính là tia. Nhiều bạn thường đặt câu hỏi: tia là gì và cách phân biệt nó với đoạn thẳng hay đường thẳng như thế nào? Học là Giỏi sẽ giúp bạn tìm hiểu chi tiết về tia là gì, các tính chất quan trọng và những bài tập minh họa dễ hiểu qua bài viết dưới đây nhé.
Thứ tư, 27/8/2025 02:03 PM
Đoạn thẳng là gì? Cách tính độ dài đoạn thẳng
Trong chương trình toán học cơ bản, từ những bài toán hình học đầu tiên, học sinh đã được làm quen với đoạn thẳng để nghiên cứu đường thẳng, góc, tam giác hay các hình đa giác phức tạp hơn. Học là Giỏi sẽ giúp bạn hiểu rõ khái niệm, tính chất và các dạng bài tập cũng như nắm bắt được cách tính độ dài đoạn thẳng nhé.
Thứ tư, 27/8/2025 08:20 AM
Đường thẳng và những kiến thức nền tảng cần ghi nhớ
Trong hình học, đường thẳng là một trong những khái niệm cơ bản và xuất hiện nhiều trong các đề thi và bài kiểm tra. Học là Giỏi sẽ giúp bạn hiểu rõ hơn về đặc điểm, ứng dụng và cách giải bài tập liên quan đến đường thẳng thông qua bài viết này nhé.
Thứ tư, 27/8/2025 03:12 AM
Hướng dẫn học bảng nhân 6 hiệu quả tại nhà
Bảng nhân 6 là một phần không thể thiếu trong bảng cửu chương, thường xuất hiện trong nhiều dạng bài tập và tình huống thực tế. Học là Giỏi sẽ giúp bạn hiểu rõ quy luật, ghi nhớ dễ dàng và thực hành hiệu quả bảng nhân 6.
Thứ ba, 26/8/2025 09:12 AM
Tổng hợp công thức tính phương sai và độ lệch chuẩn dễ nhớ
Trong thống kê và xác suất, cách dữ liệu phân tán quanh giá trị trung bình có ý nghĩa trong học tập cũng như thực tiễn. Hai công thức này thường được sử dụng để đo lường mức độ biến động đó chính là phương sai và độ lệch chuẩn. Học là Giỏi sẽ giúp bạn nắm vững kiến thức cơ bản về phương sai và độ lệch chuẩn, kèm theo bài tập minh họa dễ hiểu.
Thứ hai, 25/8/2025 09:45 AM
Tập hợp con là gì? Các trường hợp đặc biệt của tập hợp con
Khái niệm tập hợp hỗ trợ học sinh làm quen với cách mô tả và phân loại đối tượng trong môn toán cấp 3. Trong đó, tập hợp con là gì luôn là câu hỏi thường gặp bởi đây là kiến thức cơ bản nhưng lại có ứng dụng trong nhiều dạng bài tập. Học là Giỏi sẽ giúp bạn nắm vững khái niệm, tính chất và cách vận dụng tập hợp con một cách rõ ràng, dễ hiểu.