Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức

Tìm hiểu các kiến thức về hình thang cân

schedule.svg

Thứ ba, 8/10/2024 09:49 AM

Tác giả: Admin Hoclagioi

Hình thang cân là một dạng tứ giác đặc biệt quen thuộc của hình học và đóng vai trò nhất định trong các ứng dụng thực tiễn. Đây là một phần quan trọng đối với kiến thức hình học và giúp chúng ta ứng dụng giải bài tập trong kiến thức phổ thông lớp 8. Hãy cùng gia sư online Học là Giỏi khám phá kỹ hơn về các kiến thức quan trọng về hình thang cân nhé.

Mục lục [Ẩn]

Lý thuyết về hình thang cân

Hình thang cân là một dạng đặc biệt của hình thang, có hai góc kề một cạnh đáy bằng nhau.

Ví dụ: Ta có ABCD là hình thang cân với đáy là AB, CD <=> AB // CD và A^ = B^ hoặc C^ = D^

Lý thuyết về hình thang cân

Tính chất

Tính chất

Trong một hình thang cân có:

- Định lý 1: Hai cạnh bên sẽ có độ dài bằng nhau

Ví dụ: ABCD là hình thang cân có đáy AB, CD => AD = BC

- Định lý 2: Hai góc kề cạnh đáy bằng nhau 

Ví dụ: ABCD là hình thang cân có đáy AB, CD => A^ = B^ hoặc C^ = D^

- Định lý 3: Hai đường chéo bằng nhau 

Ví dụ: ABCD là hình thang cân có đáy AB, CD => AC = BD 

Chú ý:  Hình thang cân nội tiếp trong một đường tròn, có nghĩa là cả bốn đỉnh của hình thang cân đều nằm trên một đường tròn. 

Dấu hiệu nhận biết hình thang cân

Một hình thang cân sẽ có những đặc điểm sau:

+ Có hai góc kề một cạnh đáy bằng nhau

+ Có hai đường chéo bằng nhau

+ Hình thang cân nội tiếp đường tròn

Lưu ý: Hình thang cân thì có hai cạnh bên bằng nhau nhưng điều ngược lại chưa chắc đã đúng. Ví dụ tứ giác có hai cặp cạnh song song với nhau cũng có các cạnh bên bằng nhau, nhưng không phải là hình thang cân.

Bài tập hình thang cân

Bài tập cơ bản

Bài 1: Hình thang ABCD có góc ACD = góc BDC. Chứng minh rằng ABCD là hình thang cân.

Hình thang ABCD có góc ACD = góc BDC. Chứng minh rằng ABCD là hình thang cân.

Gọi E là giao điểm của AC và BD.

Do góc ACD^ = BDC^ nên tam giác ECD có C1^ = D1^, nên là tam giác cân. Từ đó suy ra EC = ED. (1)

Tương tự do góc ACD = góc BDC và AB // CD, suy ra EAB^ = EBA^ 

Nên tam giác EAB cân tại E, suy ra EA = EB. (2)

Từ (1) và (2) suy ra: EA + EC = EB + ED => AC = BD

Hình thang ABCD có hai đường chéo bằng nhau nên hình thang ABCD là hình thang cân.

Bài 2: Cho hình thang MNPQ (MN // PQ) có NMP^ = MNQ^ , E là giao điểm của MP và NQ. Chứng minh hình thang MNPQ là hình thang cân.

Cho hình thang MNPQ (MN // PQ) có   N  M  P  ^     =     M  N  Q  ^   , E là giao điểm của MP và NQ. Chứng minh hình thang MNPQ là hình thang cân.

Vì MN // QP nên NMP^ = MPQ^ và NQP^ = MNQ^ (các cặp góc so le trong) 

Mà NMP^ = MNQ^ ⇒ NMP^ = MPQ^ = NQP^ = MNQ^ . 

Δ MNE có NMP^ = MNQ^ nên Δ MNE cân tại E 

Suy ra ME = NE (1) 

Δ QEP có MPQ^ = NQP^ nên Δ QEP cân tại E 

Suy ra EQ = EP (2) 

Từ (1) và (2) ta có: ME + EP = NE +  EQ hay MP = NQ 

Suy ra MNPQ là hình thang cân.

Bài tập nâng cao

Bài 3: Hình thang cân ABCD (AB // CD, AB < CD) có các đường thẳng AD, BC cắt nhau tại I, các đường thẳng AC, BD cắt nhau tại J. Chứng minh rằng đường thẳng IJ là đường trung trực của đoạn thẳng AB.

Hình thang cân ABCD (AB // CD, AB < CD) có các đường thẳng AD, BC cắt nhau tại I, các đường thẳng AC, BD cắt nhau tại J. Chứng minh rằng đường thẳng IJ là đường trung trực của đoạn thẳng AB.

•Vì ABCD là hình thang cân nên BAD^ = ABC^ ; ADC^ = BCD^ ; AD = BC; AC = BD. 

Xét ∆DIC cân tại I (vì ADC^ = BCD^ ) nên IC = ID. 

Suy ra IC – BC = ID – AD, hay IB = IA 

Do đó I cách đều A và B nên I nằm trên đường trung trực của AB (1) 

•Xét ∆ABD và ∆BAC có: 

AB là cạnh chung; 

BAD^ = ABC^ (chứng minh trên); 

AD = BC (chứng minh trên). 

Do đó ∆ABD = ∆BAC (c.g.c) 

Suy ra ABD^ = BAC^ (hai góc tương ứng). 

Tam giác JAB cân tại J (vì ABD^ = BAC^ ) nên JA = JB 

Do đó J cách đều A và B nên J nằm trên đường trung trực của AB (2) 

Từ (1) và (2) suy ra I,J cùng nằm trên đường thẳng IJ là đường trung trực của đoạn thẳng AB.

Bài 4: Hai tia phân giác của hai góc A, B của hình thang cân ABCD (AB // CD) cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng EC = ED.

Hai tia phân giác của hai góc A, B của hình thang cân ABCD (AB // CD) cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng EC = ED

Vì ABCD là hình thang cân nên DAB^ = ABC^ ; C^ = D^ ; AD = BC . 

Theo đề bài, ta có AE, BE lần lượt là tia phân giác của BAD^ và ABC^ . 

Suy ra A1^ = A2^ = 12 DAB^ ; B1^ = B2^ = 12 ABC^ . 

Mà DAB^ = ABC^ nên A1^ = A2^ = B1^ = B2^ .

Xét tam giác EAB cân tại E (vì A1^ = B1^ ) nên EA = EB. 

Xét ∆ADE và ∆BCE có: 

EA = EB (chứng minh trên); 

A2^ = B2^ (chứng minh trên); 

AD = BC (chứng minh trên) 

Do đó ∆ADE = ∆BCE (c.g.c). 

Suy ra EC = ED

Bài tập vận dụng

Bài 5: Cho hình thang cân ABCD (với AB // CD). Hai tia phân giác của góc A và góc B cắt nhau tại điểm K, điểm này nằm trên cạnh đáy DC. Từ K, vẽ đoạn thẳng KM vuông góc với AB tại M.

a) Hãy chứng minh rằng tam giác ABK là tam giác cân.

b) Chứng minh rằng AM = BM.

Bài 6: Cho tam giác cân EFG với EF = EG. Trên hai cạnh EF và EG, lần lượt lấy các điểm H và I sao cho EH = EI. Hãy chứng minh rằng tứ giác HIGF là hình thang cân.

Bài 7: Cho hình thang cân ABCD có đáy nhỏ AB = 4 cm, đáy lớn CD = 10 cm và cạnh bên BC = 5 cm. Hãy tính đường cao AH của hình thang này.

Bài 8: Cho hình thang cân ABCD với AB // CD, và AB < CD. Gọi G là giao điểm của hai cạnh AD và BC. Gọi F là giao điểm của hai đường chéo AC và BD.

a) Chứng minh tam giác AGB cân tại G.

b) Chứng minh rằng tam giác ABD và tam giác BAC bằng nhau.

c) Chứng minh rằng FC = FD.

Xem thêm:

Tổng hợp kiến thức về hình thang SGK lớp 8

Đường trung bình của tam giác

Kết luận

Sau khi đi qua những định lý và bài tập, chúng ta có thể dễ dàng thấy rằng hình thang cân cũng rất phổ biến trong các dạng bài chứng minh và tính toán. Qua bài học trên, trung tâm gia sư online Học là Giỏi hi vọng bạn đã nắm vững kiến thức của hình thang cân để tự tin áp dụng vào những bài tập tiếp theo.

 

Chủ đề:

Đăng ký học thử ngay hôm nay

Để con học sớm - Ôn sâu và nhận ưu đãi học phí!

Bài viết liên quan

Cách so sánh phân số chính xác và dễ hiểu cho học sinh
schedule

Thứ năm, 3/7/2025 09:37 AM

Cách so sánh phân số chính xác và dễ hiểu cho học sinh

Trong chương trình toán tiểu học, so sánh phân số là kỹ năng nền tảng giúp học sinh nhận biết trong các đơn vị chia không đều. Trong bài viết này, Học là Giỏi sẽ đồng hành cùng bạn khám phá các phương pháp so sánh phân số cùng với những bài tập ứng dụng đa dạng để bạn luyện tập hiệu quả và tự tin hơn khi làm bài nhé.

Phân số bằng nhau là gì? Cách nhận biết đơn giản nhất
schedule

Thứ năm, 3/7/2025 03:24 AM

Phân số bằng nhau là gì? Cách nhận biết đơn giản nhất

Trong chương trình Toán lớp 4, phân số bằng nhau là một trong những nội dung quan trọng giúp học sinh hiểu sâu hơn về mối quan hệ giữa các phần. Học là Giỏi sẽ cùng bạn tìm hiểu chi tiết kiến thức về dạng phân số này trong bài viết dưới đây nhé.

Tử số và mẫu số là gì? Kiến thức nền tảng về phân số
schedule

Thứ tư, 2/7/2025 03:40 AM

Tử số và mẫu số là gì? Kiến thức nền tảng về phân số

Khi học về phân số, chắc hẳn bạn đã từng thắc mắc: Tử số và mẫu số là gì? Đây là khái niệm xuất hiện thường xuyên trong chương trình Toán tiểu học. Học là Giỏi sẽ cung cấp chi tiết kiến thức trong bài viết sau giúp bạn hiểu rõ tử số và mẫu số trong toán học nhé.

Các phương pháp quy đồng mẫu số các phân số
schedule

Thứ ba, 1/7/2025 08:07 AM

Các phương pháp quy đồng mẫu số các phân số

Trong chương trình toán tiểu học, phân số luôn là phần kiến thức khiến nhiều học sinh cảm thấy khó tiếp cận. Đặc biệt, việc quy đồng mẫu số thường gây nhầm lẫn nếu không được hướng dẫn cụ thể. Học là Giỏi sẽ giúp bạn giải đáp tất cả những thắc mắc về quy đồng mẫu số các phân số một cách dễ hiểu và chi tiết.

Đáp án, đề thi môn Toán vào 10 tỉnh Lâm Đồng 2025
schedule

Thứ ba, 17/6/2025 04:12 AM

Đáp án, đề thi môn Toán vào 10 tỉnh Lâm Đồng 2025

Học là Giỏi tổng hợp trọn bộ đáp án, đề thi môn Toán vào 10 tỉnh Lâm Đồng 2025 nhằm hỗ trợ học sinh thuận tiện trong việc so sánh kết quả và tự đánh giá năng lực làm bài.

Đáp án, đề thi môn Toán THPT Quốc gia 2025
schedule

Thứ sáu, 13/6/2025 07:11 AM

Đáp án, đề thi môn Toán THPT Quốc gia 2025

Bài viết cập nhật nhanh chóng và chính xác đề thi cùng đáp án giúp thí sinh so sánh kết quả và định hướng các nguyện vọng phù hợp. Học là Giỏi cung cấp đề thi chính thức môn Toán THPT Quốc gia 2025 được thi vào chiều ngày 26/06/2025 kèm đáp án chi tiết từng mã đề, hỗ trợ thí sinh tra cứu dễ dàng và tiện lợi.

message.svg zalo.png