Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức

Tìm hiểu các kiến thức về hình thang cân

schedule.svg

Thứ ba, 8/10/2024 09:49 AM

Tác giả: Admin Hoclagioi

Hình thang cân là một dạng tứ giác đặc biệt quen thuộc của hình học và đóng vai trò nhất định trong các ứng dụng thực tiễn. Đây là một phần quan trọng đối với kiến thức hình học và giúp chúng ta ứng dụng giải bài tập trong kiến thức phổ thông lớp 8. Hãy cùng gia sư online Học là Giỏi khám phá kỹ hơn về các kiến thức quan trọng về hình thang cân nhé.

Mục lục [Ẩn]

Lý thuyết về hình thang cân

Hình thang cân là một dạng đặc biệt của hình thang, có hai góc kề một cạnh đáy bằng nhau.

Ví dụ: Ta có ABCD là hình thang cân với đáy là AB, CD <=> AB // CD và A^ = B^ hoặc C^ = D^

Lý thuyết về hình thang cân

Tính chất

Tính chất

Trong một hình thang cân có:

- Định lý 1: Hai cạnh bên sẽ có độ dài bằng nhau

Ví dụ: ABCD là hình thang cân có đáy AB, CD => AD = BC

- Định lý 2: Hai góc kề cạnh đáy bằng nhau 

Ví dụ: ABCD là hình thang cân có đáy AB, CD => A^ = B^ hoặc C^ = D^

- Định lý 3: Hai đường chéo bằng nhau 

Ví dụ: ABCD là hình thang cân có đáy AB, CD => AC = BD 

Chú ý:  Hình thang cân nội tiếp trong một đường tròn, có nghĩa là cả bốn đỉnh của hình thang cân đều nằm trên một đường tròn. 

Dấu hiệu nhận biết hình thang cân

Một hình thang cân sẽ có những đặc điểm sau:

+ Có hai góc kề một cạnh đáy bằng nhau

+ Có hai đường chéo bằng nhau

+ Hình thang cân nội tiếp đường tròn

Lưu ý: Hình thang cân thì có hai cạnh bên bằng nhau nhưng điều ngược lại chưa chắc đã đúng. Ví dụ tứ giác có hai cặp cạnh song song với nhau cũng có các cạnh bên bằng nhau, nhưng không phải là hình thang cân.

Bài tập hình thang cân

Bài tập cơ bản

Bài 1: Hình thang ABCD có góc ACD = góc BDC. Chứng minh rằng ABCD là hình thang cân.

Hình thang ABCD có góc ACD = góc BDC. Chứng minh rằng ABCD là hình thang cân.

Gọi E là giao điểm của AC và BD.

Do góc ACD^ = BDC^ nên tam giác ECD có C1^ = D1^, nên là tam giác cân. Từ đó suy ra EC = ED. (1)

Tương tự do góc ACD = góc BDC và AB // CD, suy ra EAB^ = EBA^ 

Nên tam giác EAB cân tại E, suy ra EA = EB. (2)

Từ (1) và (2) suy ra: EA + EC = EB + ED => AC = BD

Hình thang ABCD có hai đường chéo bằng nhau nên hình thang ABCD là hình thang cân.

Bài 2: Cho hình thang MNPQ (MN // PQ) có NMP^ = MNQ^ , E là giao điểm của MP và NQ. Chứng minh hình thang MNPQ là hình thang cân.

Cho hình thang MNPQ (MN // PQ) có   N  M  P  ^     =     M  N  Q  ^   , E là giao điểm của MP và NQ. Chứng minh hình thang MNPQ là hình thang cân.

Vì MN // QP nên NMP^ = MPQ^ và NQP^ = MNQ^ (các cặp góc so le trong) 

Mà NMP^ = MNQ^ ⇒ NMP^ = MPQ^ = NQP^ = MNQ^ . 

Δ MNE có NMP^ = MNQ^ nên Δ MNE cân tại E 

Suy ra ME = NE (1) 

Δ QEP có MPQ^ = NQP^ nên Δ QEP cân tại E 

Suy ra EQ = EP (2) 

Từ (1) và (2) ta có: ME + EP = NE +  EQ hay MP = NQ 

Suy ra MNPQ là hình thang cân.

Bài tập nâng cao

Bài 3: Hình thang cân ABCD (AB // CD, AB < CD) có các đường thẳng AD, BC cắt nhau tại I, các đường thẳng AC, BD cắt nhau tại J. Chứng minh rằng đường thẳng IJ là đường trung trực của đoạn thẳng AB.

Hình thang cân ABCD (AB // CD, AB < CD) có các đường thẳng AD, BC cắt nhau tại I, các đường thẳng AC, BD cắt nhau tại J. Chứng minh rằng đường thẳng IJ là đường trung trực của đoạn thẳng AB.

•Vì ABCD là hình thang cân nên BAD^ = ABC^ ; ADC^ = BCD^ ; AD = BC; AC = BD. 

Xét ∆DIC cân tại I (vì ADC^ = BCD^ ) nên IC = ID. 

Suy ra IC – BC = ID – AD, hay IB = IA 

Do đó I cách đều A và B nên I nằm trên đường trung trực của AB (1) 

•Xét ∆ABD và ∆BAC có: 

AB là cạnh chung; 

BAD^ = ABC^ (chứng minh trên); 

AD = BC (chứng minh trên). 

Do đó ∆ABD = ∆BAC (c.g.c) 

Suy ra ABD^ = BAC^ (hai góc tương ứng). 

Tam giác JAB cân tại J (vì ABD^ = BAC^ ) nên JA = JB 

Do đó J cách đều A và B nên J nằm trên đường trung trực của AB (2) 

Từ (1) và (2) suy ra I,J cùng nằm trên đường thẳng IJ là đường trung trực của đoạn thẳng AB.

Bài 4: Hai tia phân giác của hai góc A, B của hình thang cân ABCD (AB // CD) cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng EC = ED.

Hai tia phân giác của hai góc A, B của hình thang cân ABCD (AB // CD) cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng EC = ED

Vì ABCD là hình thang cân nên DAB^ = ABC^ ; C^ = D^ ; AD = BC . 

Theo đề bài, ta có AE, BE lần lượt là tia phân giác của BAD^ và ABC^ . 

Suy ra A1^ = A2^ = 12 DAB^ ; B1^ = B2^ = 12 ABC^ . 

Mà DAB^ = ABC^ nên A1^ = A2^ = B1^ = B2^ .

Xét tam giác EAB cân tại E (vì A1^ = B1^ ) nên EA = EB. 

Xét ∆ADE và ∆BCE có: 

EA = EB (chứng minh trên); 

A2^ = B2^ (chứng minh trên); 

AD = BC (chứng minh trên) 

Do đó ∆ADE = ∆BCE (c.g.c). 

Suy ra EC = ED

Bài tập vận dụng

Bài 5: Cho hình thang cân ABCD (với AB // CD). Hai tia phân giác của góc A và góc B cắt nhau tại điểm K, điểm này nằm trên cạnh đáy DC. Từ K, vẽ đoạn thẳng KM vuông góc với AB tại M.

a) Hãy chứng minh rằng tam giác ABK là tam giác cân.

b) Chứng minh rằng AM = BM.

Bài 6: Cho tam giác cân EFG với EF = EG. Trên hai cạnh EF và EG, lần lượt lấy các điểm H và I sao cho EH = EI. Hãy chứng minh rằng tứ giác HIGF là hình thang cân.

Bài 7: Cho hình thang cân ABCD có đáy nhỏ AB = 4 cm, đáy lớn CD = 10 cm và cạnh bên BC = 5 cm. Hãy tính đường cao AH của hình thang này.

Bài 8: Cho hình thang cân ABCD với AB // CD, và AB < CD. Gọi G là giao điểm của hai cạnh AD và BC. Gọi F là giao điểm của hai đường chéo AC và BD.

a) Chứng minh tam giác AGB cân tại G.

b) Chứng minh rằng tam giác ABD và tam giác BAC bằng nhau.

c) Chứng minh rằng FC = FD.

Xem thêm:

Tổng hợp kiến thức về hình thang SGK lớp 8

Đường trung bình của tam giác

Kết luận

Sau khi đi qua những định lý và bài tập, chúng ta có thể dễ dàng thấy rằng hình thang cân cũng rất phổ biến trong các dạng bài chứng minh và tính toán. Qua bài học trên, trung tâm gia sư online Học là Giỏi hi vọng bạn đã nắm vững kiến thức của hình thang cân để tự tin áp dụng vào những bài tập tiếp theo.

 

Chủ đề:

Đăng ký học thử ngay hôm nay

Để con học sớm - Ôn sâu và nhận ưu đãi học phí!

Bài viết liên quan

Một số bài toán về đại lượng tỉ lệ thuận kèm lời giải
schedule

Thứ ba, 21/10/2025 08:25 AM

Một số bài toán về đại lượng tỉ lệ thuận kèm lời giải

Trong chương trình Toán 7, đại lượng tỉ lệ thuận là một nội dung quan trọng giúp học sinh hiểu rõ mối quan hệ giữa hai yếu tố thay đổi cùng chiều. Học sinh cần nắm được một số bài toán về đại lượng tỉ lệ thuận để giải được đa dạng các dạng bài thường xuất hiện trong các đề thi, đề kiểm tra. Hãy cùng Học là Giỏi tìm hiểu một số bài toán về đại lượng tỉ lệ thuận qua bài viết dưới đây!

Tổng hợp kiến thức Toán lớp 5 đầy đủ nhất
schedule

Thứ ba, 14/10/2025 07:19 AM

Tổng hợp kiến thức Toán lớp 5 đầy đủ nhất

Chương trình Toán lớp 5 là bước chuyển quan trọng tạo nền tảng cho môn Toán ở bậc THCS. Trong chương trình Toán 5, học sinh được làm quen với nhiều dạng kiến thức mới như phân số, số thập phân, tỉ số, tỉ lệ, các bài toán thực tế và hình khối. Học là Giỏi đã tổng hợp các kiến thức trọng tâm của chương trình Toán lớp 5 dưới dạng trực quan, giúp học sinh dễ theo dõi và ôn tập. Hãy cùng ôn tập về phần kiến thức này qua bài tổng hợp kiến thức Toán lớp 5 dưới đây.

Tổng hợp kiến thức Toán 3 quan trọng
schedule

Thứ ba, 14/10/2025 03:10 AM

Tổng hợp kiến thức Toán 3 quan trọng

Toán lớp 3 là môn học cung cấp nền tảng từ những kiến thức cơ bản nhất, giúp học sinh rèn luyện tư duy và khả năng tính toán. Để học tốt, các con cần ghi nhớ và hiểu rõ những công thức từ bảng nhân chia, quy tắc tính toán, lý thuyết cơ bản về hình học và giải được các bài toán có lời văn. Bộ tổng hợp kiến thức Toán 3 quan trọng dưới đây có tổng hợp đầy đủ các công thức và nội dung cần nhớ với các quy tắc và ví dụ minh họa dễ hiểu, giúp học sinh dễ dàng hệ thống kiến thức và nắm được các nội dung cốt lõi.

Tổng hợp kiến thức Toán lớp 4 dễ hiểu nhất
schedule

Thứ hai, 13/10/2025 10:28 AM

Tổng hợp kiến thức Toán lớp 4 dễ hiểu nhất

Toán lớp 4 là cơ sở kiến thức quan trọng giúp học sinh củng cố nền tảng tư duy và các kỹ năng tính toán, bổ trợ cho việc học các kiến thức Toán học phức tạp hơn. Tuy nhiên, với nhiều kiến thức và dạng bài khác nhau, các em có thể gặp khó khăn trong việc ghi nhớ các công thức. Hiểu được điều đó, Học là Giỏi đã tổng hợp toàn bộ kiến thức trọng tâm Toán lớp 4 qua những bảng tóm tắt ngắn gọn, giúp học sinh có thể học nhanh, nhớ lâu và áp dụng hiệu quả các công thức Toán 4 vào giải bài tập. Hãy cùng tìm hiểu tất cả kiến thức Toán 4 qua bài viết dưới đây!

Tia là gì? Khái niệm cơ bản và tính chất trong hình học
schedule

Thứ năm, 28/8/2025 04:23 AM

Tia là gì? Khái niệm cơ bản và tính chất trong hình học

Trong hình học, một trong những khái niệm mà học sinh cần nắm vững chính là tia. Nhiều bạn thường đặt câu hỏi: tia là gì và cách phân biệt nó với đoạn thẳng hay đường thẳng như thế nào? Học là Giỏi sẽ giúp bạn tìm hiểu chi tiết về tia là gì, các tính chất quan trọng và những bài tập minh họa dễ hiểu qua bài viết dưới đây nhé.

Đoạn thẳng là gì? Cách tính độ dài đoạn thẳng
schedule

Thứ tư, 27/8/2025 02:03 PM

Đoạn thẳng là gì? Cách tính độ dài đoạn thẳng

Trong chương trình toán học cơ bản, từ những bài toán hình học đầu tiên, học sinh đã được làm quen với đoạn thẳng để nghiên cứu đường thẳng, góc, tam giác hay các hình đa giác phức tạp hơn. Học là Giỏi sẽ giúp bạn hiểu rõ khái niệm, tính chất và các dạng bài tập cũng như nắm bắt được cách tính độ dài đoạn thẳng nhé.

message.svg zalo.png