Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức

Tổng hợp kiến thức vị trí tương đối của hai đường tròn

schedule.svg

Thứ hai, 18/11/2024 10:10 AM

Tác giả: Admin Hoclagioi

Vị trí tương đối của hai đường tròn là kiến thức quan trọng để xét các tính chất của 2 đường tròn này có mối quan hệ gì với nhau. Hãy cùng gia sư online Học là Giỏi khám phá các trường hợp cơ bản về vị trí tương đối của hai đường tròn này nhé.

Mục lục [Ẩn]

Vị trí tương đối của hai đường tròn

Vị trí tương đối của hai đường tròn

Hai đường tròn sẽ có 3 vị trí tương đối cơ bản và được chia làm 3 trường hợp sau đây:

Trường hợp 1: Hai đường tròn (O;R) và (O′;r) với (R>r) cắt nhau.

Trường hợp 1: Hai đường tròn (O;R) và (O′;r) với (R>r) cắt nhau.

Trong trường hợp này, hai đường tròn có hai điểm chung. Đường nối hai tâm O và O′ chính là đường trung trực của đoạn thẳng nối hai điểm chung A và B.

Điều kiện để hai đường tròn cắt nhau được biểu diễn bằng bất đẳng thức sau:

R − r < OO′ < R + r

Trường hợp 2: Hai đường tròn tiếp xúc nhau

1. Hai đường tròn tiếp xúc trong tại A:
Hai đường tròn (O;R) và (O′;r) với R>r tiếp xúc trong tại điểm A.

Hai đường tròn tiếp xúc trong tại A

Trong trường hợp này, điểm A nằm trên đường nối tâm của hai đường tròn, đồng thời khoảng cách giữa hai tâm O và O′ thỏa mãn:

OO′=R−r

2. Hai đường tròn tiếp xúc ngoài tại A:
Hai đường tròn (O;R) và (O′;r) với R>r tiếp xúc ngoài tại điểm A.

Hai đường tròn tiếp xúc ngoài tại A

Lúc này, điểm A cũng nằm trên đường nối tâm, và khoảng cách giữa hai tâm được xác định bởi:

OO′=R+r

Trường hợp 3: Hai đường tròn không giao nhau

1. Hai đường tròn nằm ngoài nhau:
Hai đường tròn (O;R) và (O′;r) với R>r không có điểm chung và nằm ngoài nhau. Trong trường hợp này, khoảng cách giữa hai tâm thỏa mãn:

Hai đường tròn nằm ngoài nhau

OO′>R+r

2. Hai đường tròn chứa nhau:
Khi một đường tròn nằm hoàn toàn bên trong đường tròn còn lại và không có điểm chung, khoảng cách giữa hai tâm thỏa mãn:

Hai đường tròn chứa nhau

OO′<R−r

3. Hai đường tròn đồng tâm:
Nếu hai đường tròn có chung tâm, khoảng cách giữa hai tâm bằng không:

Hai đường tròn đồng tâm

OO′=0

Ta có bảng tổng hợp sau:

Vị trí tương đối của hai đường tròn (O;R) và (O′;r) với R>rSố điểm chungHệ thức giữa d và R,r

Hai đường tròn cắt nhau

2R−r<d<R+r

Hai đường tròn tiếp xúc nhau

1 

- Tiếp xúc ngoài

1d=R+r

- Tiếp xúc trong

1d=R−r

Hai đường tròn không giao nhau

0 

- Nằm ngoài nhau

0d>R+r

- Một đường tròn chứa hoàn toàn đường tròn kia

0d<R−r

- Hai đường tròn đồng tâm

0d=0

Tính chất của đường nối tâm

Đường nối tâm đóng vai trò là trục đối xứng của hình được tạo bởi hai đường tròn. Từ đó, có thể suy ra:

- Khi hai đường tròn tiếp xúc nhau, tiếp điểm luôn nằm trên đường nối tâm.

- Khi hai đường tròn cắt nhau, đường nối tâm chính là đường trung trực của dây chung giữa hai đường tròn.

Tiếp tuyến chung của hai đường tròn

Tiếp tuyến chung của hai đường tròn là đường thẳng tiếp xúc với cả hai đường tròn đó.

Ví dụ: Khi hai đường tròn (O) và (O′) cắt nhau, sẽ tồn tại hai tiếp tuyến chung, ký hiệu là d1 và d2​ (như hình minh họa).

Khi hai đường tròn (O) và (O′) cắt nhau, sẽ tồn tại hai tiếp tuyến chung, ký hiệu là d1 và d2​

Bài tập vị trí tương đối của hai đường tròn

Để nắm rõ kiến thức cơ bản trên thì phải luyện tập thường xuyên với các dạng bài tập. Dưới đây là các dạng cơ bản và nâng cao mà bạn có thể tham khảo.

Bài tập cơ bản

Bài 1: Cho đường tròn tâm O, bán kính R. Chọn một điểm A bất kỳ trên đường tròn (O). Vẽ một đường tròn khác có đường kính là đoạn OA. Xác định vị trí tương đối của hai đường tròn này.

Cho đường tròn tâm O, bán kính R. Chọn một điểm A bất kỳ trên đường tròn (O). Vẽ một đường tròn khác có đường kính là đoạn OA. Xác định vị trí tương đối của hai đường tròn này.

Giải

Gọi O′ là tâm của đường tròn có đường kính OA. Khi đó:

O′ là trung điểm của đoạn OA.

Bán kính của đường tròn (O′) được tính là:

R=OA2=R2.R' = \frac{OA}{2} = \frac{R}{2}.

Đoạn nối tâm giữa hai đường tròn (O) và (O′) có độ dài:

d=OO=OA2=R2.d = OO' = \frac{OA}{2} = \frac{R}{2}.

Ta nhận thấy rằng:

RR=RR2=R2=d.R - R' = R - \frac{R}{2} = \frac{R}{2} = d.

Do đó, hai đường tròn (O) và (O′) tiếp xúc trong tại điểm A.

Bài 2: Trong mặt phẳng tọa độ Oxy, cho hai điểm A(−1;1) và B(3;0). Lần lượt vẽ hai đường tròn (A;r) và (B;r′).

Khi r=3 và r′=1, xác định vị trí tương đối của hai đường tròn.

Trong mặt phẳng tọa độ Oxy, cho hai điểm A(−1;1) và B(3;0). Lần lượt vẽ hai đường tròn (A;r) và (B;r′).

Giải

Tính khoảng cách giữa hai tâm
Đoạn nối tâm AB có độ dài:

d=AB=(3(1))2+(01)2=(4)2+(1)2=16+1=17.d = AB = \sqrt{(3 - (-1))^2 + (0 - 1)^2} = \sqrt{(4)^2 + (-1)^2} = \sqrt{16 + 1} = \sqrt{17}.

Tính tổng bán kính
Tổng hai bán kính của hai đường tròn là:

r+r′=3+1=4.
Từ kết quả trên:

d=17>r+r=4.d = \sqrt{17} > r + r' = 4.

Điều này cho thấy hai đường tròn không giao nhau. Vì d>r+r′, hai đường tròn (A) và (B) nằm ngoài nhau.

Bài tập nâng cao

Bài 3: Cho hai đường tròn (O;R) và (O′;R) cắt nhau tại hai điểm M và N. Biết OO′=24cm và MN=10cm. Tính bán kính R.

Cho hai đường tròn (O;R) và (O′;R) cắt nhau tại hai điểm M và N. Biết OO′=24cm và MN=10cm.

Giải

Gọi I là giao điểm của OO′ và MN. Vì OM=ON=O′M=O′N=R, nên tứ giác OMO′N là hình thoi.

Do đó, OO′⊥MN tại điểm I, và I là trung điểm của các đoạn OO′ và MN.

Khi đó:

IM=MN2=5cm, IO=OO2=12cm.IM = \frac{MN}{2} = 5 \, \text{cm}, \quad IO = \frac{OO'}{2} = 12 \, \text{cm}.

Áp dụng định lý Pythagoras trong tam giác vuông MIO, ta có:

R=OM=IM2+IO2=52+122=25+144=169=13cm.R = OM = \sqrt{IM^2 + IO^2} = \sqrt{5^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13 \, \text{cm}.

Vậy, bán kính của các đường tròn là R=13cm.

Bài 4: Cho hai đường tròn (O;R) và (O′;R′) tiếp xúc ngoài tại điểm A. Kẻ tiếp tuyến chung ngoài MN, trong đó M thuộc đường tròn (O) và N thuộc đường tròn (O′). Biết R=9cm và R′=4cm. Tính độ dài đoạn MN.

Cho hai đường tròn (O;R) và (O′;R′) tiếp xúc ngoài tại điểm A. Kẻ tiếp tuyến chung ngoài MN, trong đó M thuộc đường tròn (O) và N thuộc đường tròn (O′). Biết R=9cm và R′=4cm.

Giải

Ta có:

OO′=OA+O′A=9+4=13cm.

Kẻ đường OH⊥OM tại điểm H. Vì vậy, tứ giác O′NMH là hình chữ nhật, dẫn đến:

MH=O′N=4cm,MN=O′H.

Do đó:

OH=OM−MH=9−4=5cm.

Áp dụng định lý Pythagoras trong tam giác vuông OO′H, ta tính được:

MN=OH=OO2OH2=13252=16925=144=12cm.MN = O'H = \sqrt{OO'^2 - OH^2} = \sqrt{13^2 - 5^2} = \sqrt{169 - 25} = \sqrt{144} = 12 \, \text{cm}.

Vậy độ dài đoạn MN là 12cm.

Bài tập tự luyện

Bài 5: Cho hai đường tròn (O;R) và (O′;r) tiếp xúc nhau tại A. Vẽ một cát tuyến qua A cắt hai đường tròn lần lượt tại B và C.
Chứng minh: Các tiếp tuyến tại B và C song song với nhau.

Bài 6:Cho hai đường tròn (O;5cm) và (O′;5cm) cắt nhau tại A và B. Biết OO′=8cm.
Tính độ dài AB.

Bài 7: Cho góc vuông xOy. Lấy hai điểm I và K lần lượt trên các tia Ox và Oy. Vẽ đường tròn (I;OK), cắt tia Ox tại M (I nằm giữa O và M). Vẽ đường tròn (K;OI), cắt tia Oy tại N (K nằm giữa O và N).

a) Chứng minh: Hai đường tròn (I) và (K) luôn cắt nhau.
b) Tiếp tuyến tại M của đường tròn (I) và tiếp tuyến tại N của đường tròn (K) cắt nhau tại C.
Chứng minh: Tứ giác OMCN là hình vuông.
c) Gọi giao điểm của hai đường tròn là A và B.
Chứng minh: Ba điểm A,B,C thẳng hàng.
d) Giả sử I và K di động trên các tia Ox và Oy sao cho OI+OK=a không đổi.
Chứng minh: Đường thẳng AB luôn đi qua một điểm cố định.

Kết luận

Vị trí tương đối của hai đường tròn là một trong những chủ đề quan trọng trong hình học lớp 9. Trung tâm gia sư online Học là Giỏi hy vọng bạn đã nắm được lý thuyết và sẵn sàng đối mặt với các bài toán khó hơn trong tương lai về vị trí tương đối này nhé.

 

Chủ đề:

Đăng ký học thử ngay hôm nay

Để con học sớm - Ôn sâu và nhận ưu đãi học phí!

Bài viết liên quan

Tổng hợp kiến thức Toán lớp 5 đầy đủ nhất
schedule

Thứ ba, 14/10/2025 07:19 AM

Tổng hợp kiến thức Toán lớp 5 đầy đủ nhất

Chương trình Toán lớp 5 là bước chuyển quan trọng tạo nền tảng cho môn Toán ở bậc THCS. Trong chương trình Toán 5, học sinh được làm quen với nhiều dạng kiến thức mới như phân số, số thập phân, tỉ số, tỉ lệ, các bài toán thực tế và hình khối. Học là Giỏi đã tổng hợp các kiến thức trọng tâm của chương trình Toán lớp 5 dưới dạng trực quan, giúp học sinh dễ theo dõi và ôn tập. Hãy cùng ôn tập về phần kiến thức này qua bài tổng hợp kiến thức Toán lớp 5 dưới đây.

Tổng hợp kiến thức Toán 3 quan trọng
schedule

Thứ ba, 14/10/2025 03:10 AM

Tổng hợp kiến thức Toán 3 quan trọng

Toán lớp 3 là môn học cung cấp nền tảng từ những kiến thức cơ bản nhất, giúp học sinh rèn luyện tư duy và khả năng tính toán. Để học tốt, các con cần ghi nhớ và hiểu rõ những công thức từ bảng nhân chia, quy tắc tính toán, lý thuyết cơ bản về hình học và giải được các bài toán có lời văn. Bộ tổng hợp kiến thức Toán 3 quan trọng dưới đây có tổng hợp đầy đủ các công thức và nội dung cần nhớ với các quy tắc và ví dụ minh họa dễ hiểu, giúp học sinh dễ dàng hệ thống kiến thức và nắm được các nội dung cốt lõi.

Tổng hợp kiến thức Toán lớp 4 dễ hiểu nhất
schedule

Thứ hai, 13/10/2025 10:28 AM

Tổng hợp kiến thức Toán lớp 4 dễ hiểu nhất

Toán lớp 4 là cơ sở kiến thức quan trọng giúp học sinh củng cố nền tảng tư duy và các kỹ năng tính toán, bổ trợ cho việc học các kiến thức Toán học phức tạp hơn. Tuy nhiên, với nhiều kiến thức và dạng bài khác nhau, các em có thể gặp khó khăn trong việc ghi nhớ các công thức. Hiểu được điều đó, Học là Giỏi đã tổng hợp toàn bộ kiến thức trọng tâm Toán lớp 4 qua những bảng tóm tắt ngắn gọn, giúp học sinh có thể học nhanh, nhớ lâu và áp dụng hiệu quả các công thức Toán 4 vào giải bài tập. Hãy cùng tìm hiểu tất cả kiến thức Toán 4 qua bài viết dưới đây!

Tia là gì? Khái niệm cơ bản và tính chất trong hình học
schedule

Thứ năm, 28/8/2025 04:23 AM

Tia là gì? Khái niệm cơ bản và tính chất trong hình học

Trong hình học, một trong những khái niệm mà học sinh cần nắm vững chính là tia. Nhiều bạn thường đặt câu hỏi: tia là gì và cách phân biệt nó với đoạn thẳng hay đường thẳng như thế nào? Học là Giỏi sẽ giúp bạn tìm hiểu chi tiết về tia là gì, các tính chất quan trọng và những bài tập minh họa dễ hiểu qua bài viết dưới đây nhé.

Đoạn thẳng là gì? Cách tính độ dài đoạn thẳng
schedule

Thứ tư, 27/8/2025 02:03 PM

Đoạn thẳng là gì? Cách tính độ dài đoạn thẳng

Trong chương trình toán học cơ bản, từ những bài toán hình học đầu tiên, học sinh đã được làm quen với đoạn thẳng để nghiên cứu đường thẳng, góc, tam giác hay các hình đa giác phức tạp hơn. Học là Giỏi sẽ giúp bạn hiểu rõ khái niệm, tính chất và các dạng bài tập cũng như nắm bắt được cách tính độ dài đoạn thẳng nhé.

Đường thẳng và những kiến thức nền tảng cần ghi nhớ
schedule

Thứ tư, 27/8/2025 08:20 AM

Đường thẳng và những kiến thức nền tảng cần ghi nhớ

Trong hình học, đường thẳng là một trong những khái niệm cơ bản và xuất hiện nhiều trong các đề thi và bài kiểm tra. Học là Giỏi sẽ giúp bạn hiểu rõ hơn về đặc điểm, ứng dụng và cách giải bài tập liên quan đến đường thẳng thông qua bài viết này nhé.

message.svg zalo.png