Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức

Chinh phục kiến thức về rút gọn phân số lớp 6

schedule.svg

Thứ hai, 28/10/2024 07:36 AM

Tác giả: Admin Hoclagioi

Kiến thức về rút gọn phân số lớp 6 là kiến thức cơ bản mà bạn sẽ được học và tìm hiểu ở trong chương trình toán cấp 2. Khi chúng ta rút gọn phân số, các con số trở nên dễ nhìn hơn, từ đó rất tiện lợi hơn cho các phép tính toán. Vậy phân số tối giản là gì và tại sao chúng ta lại phải tối giản phân số? Cùng gia sư online Học là Giỏi khám phá nhé!

Mục lục [Ẩn]

Khái niệm phân số tối giản

Khái niệm phân số tối giản

Đầu tiên chúng ta sẽ tìm hiểu phân số tối giản là gì và vì sao chúng ta cần phải tối giản phân số? Hãy cùng nhau tìm hiểu qua những ý dưới đây.

Phân số tối giản là gì?

Phân số tối giản là dạng đơn giản nhất của một phân số, khi tử số và mẫu số không thể rút gọn thêm nữa. Điều đó có nghĩa là giữa tử số và mẫu số không còn bất kỳ ước số chung nào ngoài 1 và -1.

Để có thể rút gọn phân số về dạng tối giản ngay lập tức, ta chỉ cần chia cả tử số và mẫu số cho ước chung lớn nhất (ƯCLN) của chúng. Một cách khác là phân tích cả tử và mẫu thành tích các thừa số rồi tiến hành chia các thừa số chung. 

Lưu ý: 

+ Phân số ab​ được coi là tối giản nếu giá trị tuyệt đối của |a| và |b| là hai số nguyên tố cùng nhau, nghĩa là chúng không có ước chung nào khác ngoài 1. 

+ Khi rút gọn phân số, người ta thường ưu tiên rút gọn về dạng tối giản để dễ dàng trong tính toán và sử dụng.

Ví dụ, phân số 24 có thể được rút gọn thành 12, còn phân số 39​ rút gọn thành 13​. Nhưng với phân số 57 không có số nào chia chung giữa 5 và 7 ngoài 1 nên đây chính là một phân số tối giản.

Cách rút gọn phân số

Rút gọn phân số là 1 kĩ thuật tính toán sẽ được sử dụng nhiều trong phân số. Dưới đây là các bước cơ bản để bạn thấy mọi thứ dễ hiểu về phân số hơn rất nhiều.

Bước 1: Tìm ước chung lớn nhất (ƯCLN) của tử số và mẫu số

Đầu tiên, muốn đưa về phân số tối giản, bạn cần biết ước chung lớn nhất giữa tử số và mẫu số, tức là số lớn nhất có thể chia hết cho cả hai số này. Bước này cực kỳ quan trọng, vì ƯCLN sẽ quyết định mức độ rút gọn của phân số.

Ví dụ, cho phân số là 1218 thì ƯCLN giữa 12 và 18 là 6, vì 6 là số lớn nhất chia hết cho cả 12 và 18. 

Bước 2: Chia tử số và mẫu số cho ƯCLN

Sau khi tìm được ƯCLN, bạn hãy lấy nó làm cơ sở để rút gọn phân số. Chia cả tử số và mẫu số cho ƯCLN – đây là cách nhanh nhất để đưa phân số về dạng tối giản. Quay lại ví dụ với 1218​: nếu ta chia cả tử số 12 và mẫu số 18 cho 6 (ƯCLN), ta sẽ được phân số 23

Bước 3: Kiểm tra kết quả là phân số tối giản

Cuối cùng, hãy kiểm tra kết quả. Bạn cần đảm bảo rằng phân số sau khi rút gọn là tối giản – tức là không thể rút gọn thêm nữa. Đây là lúc bạn kiểm tra xem tử số và mẫu số mới có còn ước chung nào khác ngoài 1 hay không.

Ứng dụng của rút gọn phân số

Ứng dụng của rút gọn phân số

Một khi phân số đã được rút gọn, mọi phép tính sẽ trôi chảy, so sánh dễ dàng và thậm chí giải quyết các tình huống thực tế cũng trở nên mượt mà hơn rất nhiều. Hãy cùng mình khám phá từng lợi ích mang lại dưới đây nhé.

Tính toán nhanh hơn

Bạn muốn cộng hai phân số mà một trong số đó chưa được rút gọn. Thay vì làm việc với những con số to lớn, chỉ cần rút gọn về dạng phân số tối giản, phép tính của bạn đã nhẹ nhàng đi rất nhiều. Rút gọn giúp chúng ta loại bỏ đi các gánh nặng không cần thiết, làm cho phép tính trở nên đơn giản và rõ ràng. Kết quả sẽ chính xác và gọn gàng hơn rất nhiều.

So sánh phân số dễ dàng hơn

Nhờ việc rút gọn, chúng ta dễ dàng nhìn thấy phân số nào lớn hơn, nhỏ hơn. Đặc biệt khi phải so sánh trong các bài toán hay khi mua sắm, bạn sẽ dễ dàng đưa ra lựa chọn chính xác.

Giải quyết các bài toán thực tế

Rút gọn phân số còn cực kỳ hữu ích trong các tình huống thực tế hàng ngày. Giả sử bạn đang chia một chiếc bánh cho mọi người trong gia đình, hay phân chia tài chính trong một dự án, việc đưa về phân số tối giản giúp bạn tính toán nhanh chóng, đưa ra các giải pháp hợp lý. 

Bài tập rút gọn phân số

Bài tập cơ bản

Bài 1: Cho phân số sau: 7284, để phân số sau trở thành phân số tối giản: 

Lời giải: 

Ta thấy phân số 7284 có tử và mẫu đều chia hết cho 4: 

7284 = 72 : 484 : 4 = 1821

Ta thấy phân số 1821 có tử và mẫu đều chia hết cho 3: 

1821 = 18 : 321 : 3 = 67

Vậy 67 là phân số tối giản của phân số 7284

Bài 2: Rút gọn các phân số sau:  46; 128; 1525; 1122; 3610

46=4:26:2=23 128=12:48:4=32 1525=15:525:5=35 1122=11:1122:11=12 3610=36:210:2=185

Bài tập nâng cao

Bài 3: Rút gọn biểu thức: 24.52.112.723.53.72.11

Lời giải:

Ta có:

24.52.112.723.53.72.11=2.11.(23.52.11.7)5.7.(23.52.11.7)=2235

Bài 4: Đưa phân số về tối giản: 1989×1990+39781992×19913984

1989×1990+39781992×19913984 =1989×1990+1989×21992×1991-1992×2 =1989×(1990+2)1992×(1991-2) =1989×19921992×1989 =1

Bài 5: Rút gọn phân số về phân số tối giản: 3×7×13×37×39-10101505050-70707

3×7×13×37×39-10101505050-70707 =10101×39-10101505050-70707 =10101×(39-1)10101×(50-7) =39-150-7 =3843

Kết luận

Nhìn chung, rút gọn phân số là một kỹ năng nhỏ nhưng vô cùng hữu ích, giúp việc tính toán nhanh gọn và hỗ trợ so sánh một cách dễ dàng, thậm chí giải quyết các vấn đề thực tế trong cuộc sống. Vậy nên, trung tâm gia sư online Học là Giỏi hi vọng bạn hoàn toàn có thể tự tin giải các bài toán đưa về dạng phân số tối giản 1 cách dễ dàng nhé.

 

Chủ đề:

Đăng ký học thử ngay hôm nay

Để con học sớm - Ôn sâu và nhận ưu đãi học phí!

Bài viết liên quan

Tia là gì? Khái niệm cơ bản và tính chất trong hình học
schedule

Thứ năm, 28/8/2025 04:23 AM

Tia là gì? Khái niệm cơ bản và tính chất trong hình học

Trong hình học, một trong những khái niệm mà học sinh cần nắm vững chính là tia. Nhiều bạn thường đặt câu hỏi: tia là gì và cách phân biệt nó với đoạn thẳng hay đường thẳng như thế nào? Học là Giỏi sẽ giúp bạn tìm hiểu chi tiết về tia là gì, các tính chất quan trọng và những bài tập minh họa dễ hiểu qua bài viết dưới đây nhé.

Đoạn thẳng là gì? Cách tính độ dài đoạn thẳng
schedule

Thứ tư, 27/8/2025 02:03 PM

Đoạn thẳng là gì? Cách tính độ dài đoạn thẳng

Trong chương trình toán học cơ bản, từ những bài toán hình học đầu tiên, học sinh đã được làm quen với đoạn thẳng để nghiên cứu đường thẳng, góc, tam giác hay các hình đa giác phức tạp hơn. Học là Giỏi sẽ giúp bạn hiểu rõ khái niệm, tính chất và các dạng bài tập cũng như nắm bắt được cách tính độ dài đoạn thẳng nhé.

Đường thẳng và những kiến thức nền tảng cần ghi nhớ
schedule

Thứ tư, 27/8/2025 08:20 AM

Đường thẳng và những kiến thức nền tảng cần ghi nhớ

Trong hình học, đường thẳng là một trong những khái niệm cơ bản và xuất hiện nhiều trong các đề thi và bài kiểm tra. Học là Giỏi sẽ giúp bạn hiểu rõ hơn về đặc điểm, ứng dụng và cách giải bài tập liên quan đến đường thẳng thông qua bài viết này nhé.

Hướng dẫn học bảng nhân 6 hiệu quả tại nhà
schedule

Thứ tư, 27/8/2025 03:12 AM

Hướng dẫn học bảng nhân 6 hiệu quả tại nhà

Bảng nhân 6 là một phần không thể thiếu trong bảng cửu chương, thường xuất hiện trong nhiều dạng bài tập và tình huống thực tế. Học là Giỏi sẽ giúp bạn hiểu rõ quy luật, ghi nhớ dễ dàng và thực hành hiệu quả bảng nhân 6.

Tổng hợp công thức tính phương sai và độ lệch chuẩn dễ nhớ
schedule

Thứ ba, 26/8/2025 09:12 AM

Tổng hợp công thức tính phương sai và độ lệch chuẩn dễ nhớ

Trong thống kê và xác suất, cách dữ liệu phân tán quanh giá trị trung bình có ý nghĩa trong học tập cũng như thực tiễn. Hai công thức này thường được sử dụng để đo lường mức độ biến động đó chính là phương sai và độ lệch chuẩn. Học là Giỏi sẽ giúp bạn nắm vững kiến thức cơ bản về phương sai và độ lệch chuẩn, kèm theo bài tập minh họa dễ hiểu.

Tập hợp con là gì? Các trường hợp đặc biệt của tập hợp con
schedule

Thứ hai, 25/8/2025 09:45 AM

Tập hợp con là gì? Các trường hợp đặc biệt của tập hợp con

Khái niệm tập hợp hỗ trợ học sinh làm quen với cách mô tả và phân loại đối tượng trong môn toán cấp 3. Trong đó, tập hợp con là gì luôn là câu hỏi thường gặp bởi đây là kiến thức cơ bản nhưng lại có ứng dụng trong nhiều dạng bài tập. Học là Giỏi sẽ giúp bạn nắm vững khái niệm, tính chất và cách vận dụng tập hợp con một cách rõ ràng, dễ hiểu.

message.svg zalo.png