Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Thứ hai, 28/10/2024 07:35 AM
Tác giả: Admin Hoclagioi
Kiến thức về rút gọn phân số lớp 6 là kiến thức cơ bản mà bạn sẽ được học và tìm hiểu ở trong chương trình toán cấp 2. Khi chúng ta rút gọn phân số, các con số trở nên dễ nhìn hơn, từ đó rất tiện lợi hơn cho các phép tính toán. Vậy phân số tối giản là gì và tại sao chúng ta lại phải tối giản phân số? Cùng gia sư online Học là Giỏi khám phá nhé!
Mục lục [Ẩn]
Đầu tiên chúng ta sẽ tìm hiểu phân số tối giản là gì và vì sao chúng ta cần phải tối giản phân số? Hãy cùng nhau tìm hiểu qua những ý dưới đây.
Phân số tối giản là dạng đơn giản nhất của một phân số, khi tử số và mẫu số không thể rút gọn thêm nữa. Điều đó có nghĩa là giữa tử số và mẫu số không còn bất kỳ ước số chung nào ngoài 1 và -1.
Để có thể rút gọn phân số về dạng tối giản ngay lập tức, ta chỉ cần chia cả tử số và mẫu số cho ước chung lớn nhất (ƯCLN) của chúng. Một cách khác là phân tích cả tử và mẫu thành tích các thừa số rồi tiến hành chia các thừa số chung.
Lưu ý:
+ Phân số được coi là tối giản nếu giá trị tuyệt đối của |a| và |b| là hai số nguyên tố cùng nhau, nghĩa là chúng không có ước chung nào khác ngoài 1.
+ Khi rút gọn phân số, người ta thường ưu tiên rút gọn về dạng tối giản để dễ dàng trong tính toán và sử dụng.
Ví dụ, phân số có thể được rút gọn thành , còn phân số rút gọn thành . Nhưng với phân số không có số nào chia chung giữa 5 và 7 ngoài 1 nên đây chính là một phân số tối giản.
Rút gọn phân số là 1 kĩ thuật tính toán sẽ được sử dụng nhiều trong phân số. Dưới đây là các bước cơ bản để bạn thấy mọi thứ dễ hiểu về phân số hơn rất nhiều.
Đầu tiên, muốn đưa về phân số tối giản, bạn cần biết ước chung lớn nhất giữa tử số và mẫu số, tức là số lớn nhất có thể chia hết cho cả hai số này. Bước này cực kỳ quan trọng, vì ƯCLN sẽ quyết định mức độ rút gọn của phân số.
Ví dụ, cho phân số là thì ƯCLN giữa 12 và 18 là 6, vì 6 là số lớn nhất chia hết cho cả 12 và 18.
Sau khi tìm được ƯCLN, bạn hãy lấy nó làm cơ sở để rút gọn phân số. Chia cả tử số và mẫu số cho ƯCLN – đây là cách nhanh nhất để đưa phân số về dạng tối giản. Quay lại ví dụ với : nếu ta chia cả tử số 12 và mẫu số 18 cho 6 (ƯCLN), ta sẽ được phân số
Cuối cùng, hãy kiểm tra kết quả. Bạn cần đảm bảo rằng phân số sau khi rút gọn là tối giản – tức là không thể rút gọn thêm nữa. Đây là lúc bạn kiểm tra xem tử số và mẫu số mới có còn ước chung nào khác ngoài 1 hay không.
Một khi phân số đã được rút gọn, mọi phép tính sẽ trôi chảy, so sánh dễ dàng và thậm chí giải quyết các tình huống thực tế cũng trở nên mượt mà hơn rất nhiều. Hãy cùng mình khám phá từng lợi ích mang lại dưới đây nhé.
Bạn muốn cộng hai phân số mà một trong số đó chưa được rút gọn. Thay vì làm việc với những con số to lớn, chỉ cần rút gọn về dạng phân số tối giản, phép tính của bạn đã nhẹ nhàng đi rất nhiều. Rút gọn giúp chúng ta loại bỏ đi các gánh nặng không cần thiết, làm cho phép tính trở nên đơn giản và rõ ràng. Kết quả sẽ chính xác và gọn gàng hơn rất nhiều.
Nhờ việc rút gọn, chúng ta dễ dàng nhìn thấy phân số nào lớn hơn, nhỏ hơn. Đặc biệt khi phải so sánh trong các bài toán hay khi mua sắm, bạn sẽ dễ dàng đưa ra lựa chọn chính xác.
Rút gọn phân số còn cực kỳ hữu ích trong các tình huống thực tế hàng ngày. Giả sử bạn đang chia một chiếc bánh cho mọi người trong gia đình, hay phân chia tài chính trong một dự án, việc đưa về phân số tối giản giúp bạn tính toán nhanh chóng, đưa ra các giải pháp hợp lý.
Bài 1: Cho phân số sau: , để phân số sau trở thành phân số tối giản:
Lời giải:
Ta thấy phân số có tử và mẫu đều chia hết cho 4:
= =
Ta thấy phân số có tử và mẫu đều chia hết cho 3:
= =
Vậy là phân số tối giản của phân số
Bài 2: Rút gọn các phân số sau:
Bài 3: Rút gọn biểu thức:
Lời giải:
Ta có:
Bài 4: Đưa phân số về tối giản:
Bài 5: Rút gọn phân số về phân số tối giản:
Nhìn chung, rút gọn phân số là một kỹ năng nhỏ nhưng vô cùng hữu ích, giúp việc tính toán nhanh gọn và hỗ trợ so sánh một cách dễ dàng, thậm chí giải quyết các vấn đề thực tế trong cuộc sống. Vậy nên, trung tâm gia sư online Học là Giỏi hi vọng bạn hoàn toàn có thể tự tin giải các bài toán đưa về dạng phân số tối giản 1 cách dễ dàng nhé.
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Bí kíp chinh phục các hằng đẳng thức mở rộng
Thứ tư, 14/8/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Thể thơ song thất lục bát trong văn chương Việt Nam
Thứ ba, 28/5/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ ba, 26/11/2024 09:39 AM
Tứ giác nội tiếp là gì? Tính chất của tứ giác nội tiếp
Tứ giác nội tiếp là một trong những khái niệm quan trọng trong hình học lớp 9, đặc biệt khi tìm hiểu về các mối quan hệ giữa các điểm và đường tròn. Hãy cùng gia sư online Học là Giỏi khám phá tứ giác nội tiếp này là gì và chúng có các tính chất như thế nào nhé.
Thứ ba, 26/11/2024 04:35 AM
Khám phá lý thuyết về cung chứa góc toán 9
Khái niệm cung chứa góc ở trong toán lớp 9 đóng vai trò quan trọng khi tìm hiểu các tính chất và bài toán liên quan đến hình tròn. Cùng gia sư online Học là Giỏi đi sâu vào khái niệm và tính chất về cung chứa góc của đường tròn nhé.
Thứ hai, 25/11/2024 09:30 AM
Tìm hiểu góc có đỉnh ở bên trong đường tròn, bên ngoài đường tròn
Góc có đỉnh nằm bên trong đường tròn hoặc bên ngoài đường tròn mang đến những đặc điểm và tính chất riêng. Việc tìm hiểu về các loại góc này hỗ trợ rất nhiều trong việc giải quyết các bài toán hình học phức tạp. Hãy cùng gia sư online Học là Giỏi khám phá những khái niệm và định lý về góc có đỉnh nằm bên trong và bên ngoài đường tròn nhé.
Thứ sáu, 22/11/2024 09:18 AM
Chinh phục kiến thức về góc nội tiếp
Trong hình tròn, góc nội tiếp là một chủ đề cơ bản khi chúng có nhiều tính chất cần lưu ý trong hình học phẳng. Đây là khái niệm giúp chúng ta hiểu thêm các định lý liên quan đến đường tròn. Cùng gia sư online Học là Giỏi tìm hiểu về góc nội tiếp có gì đặc biệt và những nội dung quan trọng trong bài học này nhé.
Thứ ba, 19/11/2024 10:06 AM
Khám phá mối liên hệ giữa cung và dây
Mối liên hệ giữa cung và dây cung của đường tròn là chủ đề quan trọng trong chương trình hình học lớp 9. Dù chúng ta đã quá quen thuộc với hình ảnh những đường tròn, ít ai biết rằng cung và dây cung tạo sự liên kết mật thiết trong hình tròn. Hãy cùng gia sư online Học là Giỏi tìm hiểu rõ mối quan hệ này có gì đặc biệt nhé.
Thứ hai, 18/11/2024 10:07 AM
Tổng hợp kiến thức vị trí tương đối của hai đường tròn
Vị trí tương đối của hai đường tròn là kiến thức quan trọng để xét các tính chất của 2 đường tròn này có mối quan hệ gì với nhau. Hãy cùng gia sư online Học là Giỏi khám phá các trường hợp cơ bản về vị trí tương đối của hai đường tròn này nhé.