Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức

Lí thuyết về góc tạo bởi tia tiếp tuyến và dây cung

schedule.svg

Thứ hai, 20/5/2024 09:23 AM

Tác giả: Admin Hoclagioi

Góc tạo bởi tia tiếp tuyến và dây cung là kiến thức rất quan trọng trong chương trình hình học Toán 9. Đây là dạng bài thường xuất hiện trong các bài kiểm tra, kỳ thi cuối kỳ hay chuyển cấp. Trong bài viết này, Học là Giỏi sẽ giúp các em học sinh ôn tập kiến thức về định nghĩa, hệ thức và cách giải bài tập trắc nghiệm, tự luận của dạng toán này.

Mục lục [Ẩn]

Định nghĩa góc tạo bởi tia tiếp tuyến và dây cung

Định nghĩa góc tạo bởi tia tiếp tuyến và dây cung

Góc tạo bởi tia tiếp tuyến và dây cung là góc có đỉnh nằm trên đường tròn và một cạnh là tia tiếp tuyến còn cạnh kia chưa dây cung của đường tròn đó.

Như vậy, góc tạo bởi tiếp tuyến và dây cung cần thỏa mãn các điều kiện sau:

- Đỉnh nằm trên đường tròn

- Một cạnh chứa tiếp điểm của đường tròn

- Cạnh còn lại sẽ chứa dây cung của đường tròn

Vậy chỉ cần thiếu ít nhất 1 trong 3 điều kiện trên thì góc đó không phải là góc tạo bởi tia tiếp tuyến và dây cung.

Góc tạo bởi tia tiếp tuyến và dây cung là góc có đỉnh nằm trên đường tròn và một cạnh là tia tiếp tuyến còn cạnh kia chưa dây cung của đường tròn đó.

Ví dụ: Góc BAx hình dưới đây được hình thành bởi tia tiếp tuyến Ax và dây cung AB của đường tròn.

Góc BAx hình dưới đây được hình thành bởi tia tiếp tuyến Ax và dây cung AB của đường tròn.

Định lý

Số đo của góc được tạo bởi tia tiếp tuyến và dây cung bằng một nửa số đo của cung mà nó chắn.

Ví dụ: Số đo của góc được tạo bởi tia tiếp tuyến và dây cung bằng một nửa số đo của cung mà nó chắn.

BAx^=12 s đo cung AmB BAy^=12 s đo cung AnB

Hệ quả

Trong một đường tròn, góc tạo bởi tia tiếp tuyến và dây cung sẽ bằng góc nội tiếp cùng chắn một cung.

Hệ quả

Góc BAC là góc nội tiếp chắn cung nhỏ BmC.

Góc BCy là góc tạo bởi tia tiếp tuyến Cy và dây cung CB, cũng chắn cung nhỏ BmC.

Do đó: BAC^=BCy^=12 số đo cung BmC.

Các dạng toán thường gặp

Dạng 1: Chứng minh các góc bằng nhau, các tam giác đồng dạng, các hệ thức về cạnh

Phương pháp:

Ta sử dụng hệ quả về góc tạo bởi tia tiếp tuyến và dây cung hoặc hệ quả của hai góc nội tiếp:

 

Dạng 2: Chứng minh các đường thẳng vuông góc, song song. Chứng minh một tia là tiếp tuyến của đường tròn. Tính độ dài bán kính, độ dài đoạn thẳng

Phương pháp:

Sử dụng hệ quả về góc tạo bởi tia tiếp tuyến và dây cung hoặc hệ quả của hai góc nội tiếp.

Sử dụng hệ thức lượng trong tam giác vuông và định lý Pytago.

Bài tập góc tạo bởi tia tiếp tuyến và dây cung

Dưới đây là các bài tập cơ bản và nâng cao giúp học sinh dễ dàng hiểu cách áp dụng lý thuyết về góc tạo bởi tia tiếp tuyến và dây cung, đồng thời sử dụng ký hiệu góc dạng mũ để tăng tính trực quan.

Bài tập cơ bản

Bài 1: Cho đường tròn (O;R) và điểm A nằm trên đường tròn. Tia tiếp tuyến tại A cắt đường kính BC của đường tròn tại S. Biết SAB^=30, hãy tính độ dài đoạn AC theo bán kính R.

Cho đường tròn (O;R) và điểm A nằm trên đường tròn. Tia tiếp tuyến tại A cắt đường kính BC của đường tròn tại S.

Ta có:
SAB^+BAO^=90BAO^=9030=60.\widehat{SAB} + \widehat{BAO} = 90^\circ \Rightarrow \widehat{BAO} = 90^\circ - 30^\circ = 60^\circ.

Tam giác △OBA cân tại O, nên BAO^=60.\widehat{BAO} = 60^\circ.
Vì vậy, △OBA là tam giác đều.

Suy ra: AB=OB=R.

Góc BAC^\widehat{BAC} là góc nội tiếp chắn nửa đường tròn.
Do đó, BAC^=90.\widehat{BAC} = 90^\circ.

Áp dụng định lý Pythagoras cho tam giác △ABC:

AC=BC2AB2=(2R)2R2=R3.AC = \sqrt{BC^2 - AB^2} = \sqrt{(2R)^2 - R^2} = R\sqrt{3}.

Bài 2: Cho đường tròn (O;R) và điểm I nằm ngoài đường tròn với OI=2R. Điểm C thuộc đường tròn, kẻ tiếp tuyến AI của đường tròn. Gọi B là giao điểm của đường thẳng OI và đường tròn (O), trong đó B nằm giữa O và I. Tính số đo góc ACB^.

Cho đường tròn (O;R) và điểm I nằm ngoài đường tròn với OI=2R. Điểm C thuộc đường tròn, kẻ tiếp tuyến AI của đường tròn. Gọi B là giao điểm của đường thẳng OI và đường tròn (O), trong đó B nằm giữa O và I.

Ta có:
BI=OI−OB=2R−R=R.

Trong tam giác vuông AOI:
B là trung điểm của đoạn OI.

Do đó: BA=BI=BO=R.

Suy ra tam giác △OBA là tam giác đều (các cạnh đều bằng R).

Vậy: BOA^=60ACB^=30\widehat{BOA} = 60^\circ \Rightarrow \widehat{ACB} = 30^\circ.

Vì BOA^\widehat{BOA} là góc ở tâm chắn cung AB,

và ACB^\widehat{ACB} là góc nội tiếp chắn cung AB, nên:

ACB^=12BOA^.\widehat{ACB} = \frac{1}{2} \widehat{BOA}.

Bài tập nâng cao

Bài 3: Cho hai đường tròn (O) và (O′) cắt nhau tại hai điểm A và B. Tiếp tuyến tại A của đường tròn (O′) cắt đường tròn (O) tại điểm C, và tiếp tuyến tại A của đường tròn (O) cắt đường tròn (O′) tại điểm D.

Chứng minh: AB2=BDBCAB^2 = BD \cdot BC.

Cho hai đường tròn (O) và (O′) cắt nhau tại hai điểm A và B. Tiếp tuyến tại A của đường tròn (O′) cắt đường tròn (O) tại điểm C, và tiếp tuyến tại A của đường tròn (O) cắt đường tròn (O′) tại điểm D.

Xét tam giác MAB và tam giác MCA có:
M^\widehat{M} chung,
MAB^=MCA^\widehat{MAB} = \widehat{MCA}
(góc được tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp chắn cung AB).

Do đó, △MAB và △MCA đồng dạng với nhau (g.g).

Suy ra:

MAMC=MBMAMA2=MBMC.\frac{MA}{MC} = \frac{MB}{MA} \Rightarrow MA^2 = MB \cdot MC.

 

 Xem thêm:

Tiếp tuyến là gì? Tất tần tật về tiếp tuyến mà bạn cần biết

Lí thuyết về tính chất 2 tiếp tuyến cắt nhau

Kết luận

Trên đây là tổng hợp lí thuyết và dạng bài tập thường gặp về góc tạo bởi tia tiếp tuyến và dây cung trong chương trình môn Toán lớp 9. Học là Giỏi mong rằng, nó sẽ gợi ý cho các bạn cách hệ thống kiến thức sáng tạo và đẹp theo cách của riêng mình, biến các công thức khô khan trở nên sinh động hơn, từ đó giúp chúng mình nhớ và áp dụng để giải được các bài toán liên quan. 
 

Chủ đề:

Đăng ký học thử ngay hôm nay

Để con học sớm - Ôn sâu và nhận ưu đãi học phí!

Bài viết liên quan

Tổng hợp đề ôn tập hè lớp 5 lên 6 môn toán có chọn lọc
schedule

Thứ sáu, 16/5/2025 09:20 AM

Tổng hợp đề ôn tập hè lớp 5 lên 6 môn toán có chọn lọc

Đối với các bạn học sinh chuẩn bị lên lớp 6, việc ôn tập hè lớp 5 lên 6 môn toán giúp nhớ lại chương trình học cũ, tự tin bước vào cấp học quan trọng tiếp theo. Hôm nay gia sư online Học là Giỏi cung cấp kho đề ôn luyện đa dạng để hỗ trợ các em củng cố kiến thức vững chắc trong quá trình học tập nhé.

Kinh nghiệm chọn gia sư toán lớp 11 tại Hà Nội phù hợp nhất
schedule

Thứ tư, 7/5/2025 08:59 AM

Kinh nghiệm chọn gia sư toán lớp 11 tại Hà Nội phù hợp nhất

Nhiều học sinh luôn gặp khó khăn với chương trình toán nâng cao và thiếu các phương pháp học hiệu quả khi vào lớp 11. Vì vậy, việc tìm gia sư toán lớp 11 tại Hà Nội trở thành giải pháp tối ưu giúp học sinh nắm chắc kiến thức và cải thiện thành tích học tập. Gia sư online Học là Giỏi sẽ giúp bạn hiểu cách lựa chọn gia sư toán lớp 11 tại Hà Nội sao cho phù hợp nhất.

Tại sao cần tìm gia sư toán lớp 10 tại Hà Nội?
schedule

Thứ tư, 7/5/2025 07:52 AM

Tại sao cần tìm gia sư toán lớp 10 tại Hà Nội?

Lựa chọn gia sư toán lớp 10 tại Hà Nội giúp con kịp thời tháo gỡ những vướng mắc trong quá trình học, đồng thời tạo tiền đề vững chắc để con tự tin trước những thử thách học tập. Trong bài viết dưới đây, Gia sư online Học là Giỏi sẽ chỉ cho các bậc phụ huynh cách tìm gia sư toán lớp 10 tại Hà Nội sao cho phù hợp nhất nhé.

Làm thế nào để chọn gia sư toán lớp 7 tại Hà Nội?
schedule

Thứ hai, 5/5/2025 10:27 AM

Làm thế nào để chọn gia sư toán lớp 7 tại Hà Nội?

Với học sinh lớp 7, toán học là nền tảng của các môn học liên quan đến tính toán và cũng là bước đệm cho những kỳ thi quan trọng sau này. Gia sư online Học là Giỏi sẽ chia sẻ cách chọn gia sư toán lớp 7 tại Hà Nội trong bài viết dưới đây nhé.

Bí quyết cách học giỏi toán mọi học sinh cần biết
schedule

Thứ hai, 28/4/2025 06:51 AM

Bí quyết cách học giỏi toán mọi học sinh cần biết

Toán học luôn là một môn học quan trọng trong chương trình giáo dục và cả trong cuộc sống hàng ngày. Tuy nhiên, không phải ai cũng dễ dàng nắm vững được các kiến thức và kỹ năng cần thiết để học giỏi môn toán. Hãy cùng gia sư online Học là Giỏi cung cấp những cách học giỏi toán đơn giản, giúp bạn tự tin và thành công trong việc học tập.

Mẹo học bảng nhân 5 cực dễ hiểu cho học sinh tiểu học
schedule

Thứ sáu, 25/4/2025 07:16 AM

Mẹo học bảng nhân 5 cực dễ hiểu cho học sinh tiểu học

Bảng nhân 5 là một phần không thể thiếu trong hệ thống bảng cửu chương hỗ trợ học sinh ghi nhớ và vận dụng phép nhân với số 5 một cách nhanh chóng. Hôm nay gia sư online Học là Giỏi sẽ cùng bạn khám phá chi tiết bảng nhân 5 nhé.

message.svg zalo.png