Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức

Tổng quát kiến thức về hình bình hành lớp 8

schedule.svg

Thứ sáu, 11/10/2024 03:05 AM

Tác giả: Admin Hoclagioi

Hình bình hành là một tứ giác đặc biệt trong hình học mà bạn sẽ phải đối mặt trong kiến thức lớp 8. Trong thực tế, đây là một trong những hình có cấu trúc đầy thú vị với những tính chất và dấu hiệu nhận biết độc đáo. Cùng gia sư online Học là Giỏi khám phá sâu hơn về kiến thức hình đặc biệt này nhé!

Mục lục [Ẩn]

Kiến thức hình bình hành lớp 8 cần nhớ

Hình bình hành là một tứ giác có hai cặp cạnh đối diện song song với nhau.

Kiến thức cần nhớ

Ví dụ: Ta có tứ giác ABCD là hình bình hành ⇔ AB // CD và AD // BC

Từ định nghĩa trên, có thể suy ra rằng: Đây là một trường hợp đặc biệt của hình thang (trong đó các cạnh bên cũng song song với nhau).

Tính chất hình bình hành

Đây là hình có các tính chất đặc biệt hơn so với hình thông thường. Dưới đây là các tính chất đó:

Trong hình bình hành sẽ chứa:

+ Các cạnh đối bằng nhau

+ Các góc đối bằng nhau

+ Hai đường chéo cắt nhau tại trung điểm của mỗi đường

Tính chất

ABCD là hình bình hành, AC cắt BD tại E. Khi đó:

• AB = CD, AD = BC

BAD ^BCD^ABC ^ADC^

• EA = EC, EB = ED

Dấu hiệu nhận biết hình bình hành

Dấu hiệu nhận biết là những yếu tố giúp bạn chứng minh một tứ giác là hình bình hành. Các dấu hiệu nhận biết bao gồm:

+ Tứ giác có các cạnh đối song song 

+ Tứ giác có các cạnh đối bằng nhau 

+ Tứ giác có hai cạnh đối song song và bằng nhau 

+ Tứ giác có các góc đối bằng nhau 

+ Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường

Công thức tính chu vi

Chu vi của hình bình hành được tính bằng tổng độ dài bốn cạnh của hình đó. Ngoài ra ta có thể nói chu vi sẽ bằng hai lần tổng độ dài một cặp cạnh kề nhau bất kì. Ta có công thức sau:

Công thức tính chu vi

P = a + a + b + b = 2(a + b)

Trong đó, a và b là độ dài của hai cạnh kề nhau.

Công thức tính diện tích 

Để tính diện tích của hình bình hành, bạn cần nhân chiều cao với cạnh đáy tương ứng. Ta có công thức sau:

Công thức tính diện tích

S=a×h

Trong đó:

+ a là độ dài cạnh đáy.

+ h là chiều cao của hình, tức là khoảng cách vuông góc từ đỉnh đối diện xuống cạnh đáy.

Bài tập về hình bình hành

Để nắm rõ kiến thức cơ bản trên thì phải luyện tập thường xuyên với các dạng bài tập. Dưới đây là các dạng cơ bản và nâng cao mà bạn có thể tham khảo.

Bài tập cơ bản

Bài 1: Cho hình bình hành có cạnh đáy bằng 12cm, cạnh bên bằng 7cm, chiều cao bằng 5cm. Hãy tính chu vi và diện tích của hình đó?

Bài 1: Cho hình bình hành có cạnh đáy bằng 12cm, cạnh bên bằng 7cm, chiều cao bằng 5cm. Hãy tính chu vi và diện tích của hình đó?

Giải

Chu vi của hình là:

P = 2( 12 + 7) = 38 (cm)

Diện tích hình là:

S = a.h = 12.5 = 60 (cm2)

Bài 2: Cho hình bình hành ABCD. Gọi E, F theo thứ tự là trung điểm của AB và CD

Bài 2: Cho hình bình hành ABCD. Gọi E, F theo thứ tự là trung điểm của AB và CD

a. Chứng minh: AF // CE

b. Gọi M, N theo thứ tự là giao điểm của BD với AF, CE. Chứng minh: DM = MN = NB

Giải

a. Vì ABCD là hình bình hành:

⇒ AB = CD (tính chất)

mà E thuộc AB và F thuộc DC ⇒ AE // FC

Vì E, F là trung điểm của AB và CD

⇒ AE = EB = DF = FC

Xét tứ giác AECF có:

AE = FC và AE // FC

⇒ AECF là hình bình hành (DHNB) ⇒ AF // EC (tính chất)

b. Gọi AC giao BD tại O

Xét tam giác ADC có:

DO, AF là trung tuyến (AO = OC, DF = FC)

AF giao DO tại M

⇒ M là trọng tâm của tam giác ADC

⇒ DM = 2/3 DO = 2/3 BO (1)

và OM = 1/3 DO = 1/3 BO (2) (do DO = BO)

Xét tam giác ABC có:

BO, CE là trung tuyến

BO giao CE tại N

⇒ N là trọng tâm của tam giác ABC

⇒ BN = 2/3 BO (3)

và ON = 1/3 BO (4)

Từ (2), (4) ⇒ MN = OM + ON = 1/3 BO + 1/3 BO = 2/3 BO (5)

Từ (1), (3) và (5) ⇒ DM = BN = MN

Bài tập nâng cao

Bài 3: Hình bình hành ABCD, O là giao điểm của hai đường chéo, E và F theo thứ tự là trung điểm của OD và OB.

Bài 3: Hình bình hành ABCD, O là giao điểm của hai đường chéo, E và F theo thứ tự là trung điểm của OD và OB.

a. Chứng minh: AE // CF

b. Gọi AE giao CD tại K. Chứng minh: DK = 1/2 KC

Giải

a. AC giao BD tại O ⇒ OD = BO

Vì E, F là trung điểm của DO và BO ⇒ DE = EO = OF = FB

Xét tứ giác AFCE có:

AC giao EF tại O

OA = OC

OE = OF

⇒ AFCE là hình bình hành (DHNB)

⇒ AE // CF (tính chất)

b. Từ O kẻ OM // EK

Xét tam giác DOM có:

OM // EK

và E là trung điểm của DO

⇒ K là tung điểm của DM ⇒ DK = KM (1)

Xét tam giác CDK có:

OM // AK 

và O là trung điểm của AC

⇒ M là trung điểm của KC ⇒ CM = KM (2)

Từ (1) và (2) ⇒ DK = KM = CM

mà KM + CM = KC

⇒ DK = 1/2 KC

Bài 4: Tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của BD, AB, AC, CD.

Bài 4: Tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của BD, AB, AC, CD.

a. Chứng minh: EFGH là hình bình hành

b. Cho AD = a, BC = b. Tính chu vi hình hình hành EFGH

Giải

a. Xét tam giác ABD có:

F và E lần lượt là trung điểm của AB, BD ⇒ EF là đường trung bình của tam giác ABD

⇒ EF // AD (1)

và EF = 1/2 AD (2)

Tương tự, ta có GH là đường trung bình của tam giác ACD

⇒ GH // AD (3)

và GH = 1/2 AD (4)

Từ (1) và (3) ⇒ EF // GH

(2) và (4) ⇒ EF = GH

⇒ tứ giác GHEF là hình bình hành

b. Ta có: GH = EF = 1/2 AD = 1/2 a

FG = HE = 1/2 BC = 1/2 b

Chu vi của GFEH là:

C = (1/2 a + 1/2 b) .2 = a + b

Bài 5: Cho tam giác ABH, trực tâm H. Các đường thẳng vuông góc với AB tại B, vuông góc với AC tại C cắt nhau tại D. Chứng minh:

Bài 5: Cho tam giác ABH, trực tâm H. Các đường thẳng vuông góc với AB tại B, vuông góc với AC tại C cắt nhau tại D. Chứng minh:

a. BDCH là hình bình hành

b. BAC ^BDC ^= 180°

c. H, M, D thẳng hàng (M là trung điểm BC)

Giải

a. Ta có: CH ⊥ AB

và BD ⊥ AB 

⇒ CH // DB (1)

Lại có: BH ⊥ AC

và CD ⊥ AC

⇒ BH // CD (2)

Từ (1) và (2) ⇒ BHCD là hình bình hành (DHNB)

b. Tứ giác ABCD có:

BAC^ ABD^ + BDC ^ACD^ = 360°

⇒ BAC ^+ 90° + BDC + 90° = 360°

⇒ BAC ^BDC ^= 180°

c. Vì BHCD là hình bình hành nên BC cắt HD tại trung điểm của mỗi đường

Ta có: M là tung điểm của BC

⇒ M là trung điểm của HD

⇒ H, M, D thẳng hàng

Xem thêm:

Dấu hiệu nhận biết hình thang cân

Khám phá kiến thức về hình thang lớp 8

Kết luận

Thông qua các khái niệm, tính chất, dấu hiệu nhận biết và cả các bài tập liên quan, bạn thấy rằng hình bình hành xuất hiện phổ biến qua các bài toán hình học và thử thách về không gian, đường chéo, và những mối liên hệ toán học sâu sắc. Qua bài học này, trung tâm gia sư online Học là Giỏi hi vọng bạn đã hiểu rõ kiến thức về hình đặc biệt này và dễ dàng ứng dụng trong các bài toán sau này.

 

Chủ đề:

Đăng ký học thử ngay hôm nay

Để con học sớm - Ôn sâu và nhận ưu đãi học phí!

Bài viết liên quan

Tia là gì? Khái niệm cơ bản và tính chất trong hình học
schedule

Thứ năm, 28/8/2025 04:23 AM

Tia là gì? Khái niệm cơ bản và tính chất trong hình học

Trong hình học, một trong những khái niệm mà học sinh cần nắm vững chính là tia. Nhiều bạn thường đặt câu hỏi: tia là gì và cách phân biệt nó với đoạn thẳng hay đường thẳng như thế nào? Học là Giỏi sẽ giúp bạn tìm hiểu chi tiết về tia là gì, các tính chất quan trọng và những bài tập minh họa dễ hiểu qua bài viết dưới đây nhé.

Đoạn thẳng là gì? Cách tính độ dài đoạn thẳng
schedule

Thứ tư, 27/8/2025 02:03 PM

Đoạn thẳng là gì? Cách tính độ dài đoạn thẳng

Trong chương trình toán học cơ bản, từ những bài toán hình học đầu tiên, học sinh đã được làm quen với đoạn thẳng để nghiên cứu đường thẳng, góc, tam giác hay các hình đa giác phức tạp hơn. Học là Giỏi sẽ giúp bạn hiểu rõ khái niệm, tính chất và các dạng bài tập cũng như nắm bắt được cách tính độ dài đoạn thẳng nhé.

Đường thẳng và những kiến thức nền tảng cần ghi nhớ
schedule

Thứ tư, 27/8/2025 08:20 AM

Đường thẳng và những kiến thức nền tảng cần ghi nhớ

Trong hình học, đường thẳng là một trong những khái niệm cơ bản và xuất hiện nhiều trong các đề thi và bài kiểm tra. Học là Giỏi sẽ giúp bạn hiểu rõ hơn về đặc điểm, ứng dụng và cách giải bài tập liên quan đến đường thẳng thông qua bài viết này nhé.

Hướng dẫn học bảng nhân 6 hiệu quả tại nhà
schedule

Thứ tư, 27/8/2025 03:12 AM

Hướng dẫn học bảng nhân 6 hiệu quả tại nhà

Bảng nhân 6 là một phần không thể thiếu trong bảng cửu chương, thường xuất hiện trong nhiều dạng bài tập và tình huống thực tế. Học là Giỏi sẽ giúp bạn hiểu rõ quy luật, ghi nhớ dễ dàng và thực hành hiệu quả bảng nhân 6.

Tổng hợp công thức tính phương sai và độ lệch chuẩn dễ nhớ
schedule

Thứ ba, 26/8/2025 09:12 AM

Tổng hợp công thức tính phương sai và độ lệch chuẩn dễ nhớ

Trong thống kê và xác suất, cách dữ liệu phân tán quanh giá trị trung bình có ý nghĩa trong học tập cũng như thực tiễn. Hai công thức này thường được sử dụng để đo lường mức độ biến động đó chính là phương sai và độ lệch chuẩn. Học là Giỏi sẽ giúp bạn nắm vững kiến thức cơ bản về phương sai và độ lệch chuẩn, kèm theo bài tập minh họa dễ hiểu.

Tập hợp con là gì? Các trường hợp đặc biệt của tập hợp con
schedule

Thứ hai, 25/8/2025 09:45 AM

Tập hợp con là gì? Các trường hợp đặc biệt của tập hợp con

Khái niệm tập hợp hỗ trợ học sinh làm quen với cách mô tả và phân loại đối tượng trong môn toán cấp 3. Trong đó, tập hợp con là gì luôn là câu hỏi thường gặp bởi đây là kiến thức cơ bản nhưng lại có ứng dụng trong nhiều dạng bài tập. Học là Giỏi sẽ giúp bạn nắm vững khái niệm, tính chất và cách vận dụng tập hợp con một cách rõ ràng, dễ hiểu.

message.svg zalo.png