Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức

Chinh phục kiến thức về góc nội tiếp

schedule.svg

Thứ sáu, 22/11/2024 09:18 AM

Tác giả: Admin Hoclagioi

Trong hình tròn, góc nội tiếp là một chủ đề cơ bản khi chúng có nhiều tính chất cần lưu ý trong hình học phẳng. Đây là khái niệm giúp chúng ta hiểu thêm các định lý liên quan đến đường tròn. Cùng gia sư online Học là Giỏi tìm hiểu về góc nội tiếp có gì đặc biệt và những nội dung quan trọng trong bài học này nhé.

Mục lục [Ẩn]

Khái niệm góc nội tiếp

Khái niệm góc nội tiếp

Góc nội tiếp là góc có đỉnh nằm trên một đường tròn, với hai cạnh đi qua và chứa hai dây cung của đường tròn đó.

- Phần cung nằm bên trong góc nội tiếp được gọi là cung bị chắn bởi góc này.

Ví dụ: Góc ACB là góc nội tiếp chắn cung AB.

Góc ACB là góc nội tiếp chắn cung AB.

Định lý góc nội tiếp

Trong một đường tròn, số đo của góc nội tiếp bằng một nửa số đo của cung bị chắn bởi góc đó.

Ví dụ: Cho hình vẽ dưới đây:

Góc   B  A  C  ^   là góc nội tiếp chắn cung nhỏ BC (hình 1) hoặc chắn cung lớn BC (hình 2).

Góc BAC^ là góc nội tiếp chắn cung nhỏ BC (hình 1) hoặc chắn cung lớn BC (hình 2).

Theo tính chất góc nội tiếp:

BAC^=12sđ cung BC.

Tính chất góc nội tiếp

Trong một đường tròn, các tính chất sau được thỏa mãn:

a) Các góc nội tiếp bằng nhau sẽ chắn các cung bằng nhau.

b) Nếu các góc nội tiếp cùng chắn một cung hoặc các cung có độ dài bằng nhau, thì các góc này cũng bằng nhau.

c) Một góc nội tiếp nhỏ hơn hoặc bằng 90∘ có số đo bằng nửa số đo của góc ở tâm chắn cùng một cung.

d) Góc nội tiếp chắn nửa đường tròn luôn là góc vuông.

Bài tập góc nội tiếp

Để nắm rõ kiến thức cơ bản trên thì phải luyện tập thường xuyên với các dạng bài tập. Dưới đây là các dạng cơ bản và nâng cao mà bạn có thể tham khảo.

Bài tập cơ bản

Bài 1: Cho tam giác △ABC cân tại A với A^=90. Vẽ đường tròn đường kính AB, đường tròn này cắt BC tại D và cắt AC tại E. Chứng minh rằng tam giác △DBE cân.

Cho tam giác △ABC cân tại A với   A  ^  =  9  0  ∘  . Vẽ đường tròn đường kính AB, đường tròn này cắt BC tại D và cắt AC tại E. Chứng minh rằng tam giác △DBE cân.

Giải

Ta có:

 EBD^=12sđ cung DE,  BED^=12sđ cung BD. (1)

Góc BDA^=90(do BDA^ là góc nội tiếp chắn nửa đường tròn).

⇒ AD⊥BC.

Vì tam giác △ABC cân tại A, nên AD vừa là đường cao vừa là đường phân giác của góc BAC^.

Do đó, ta có:

 BAD^=DAE^, và EBD^=BED^. (2)

Từ (1) và (2), suy ra:

DBE^=DEB^.\widehat{DBE} = \widehat{DEB}.

Điều này dẫn đến DE=DB.

Vậy tam giác △DBE cân tại D.

Bài 2: Cho đường tròn (O;R) có đường kính BC cố định. Điểm A di chuyển trên đường tròn, khác B và C. Vẽ đường kính AOD. Xác định vị trí của điểm A để diện tích △ABC đạt giá trị lớn nhất, khi đó ADC^=?\widehat{ADC} = ?.

Cho đường tròn (O;R) có đường kính BC cố định. Điểm A di chuyển trên đường tròn, khác B và C. Vẽ đường kính AOD. Xác định vị trí của điểm A để diện tích △ABC đạt giá trị lớn nhất,

Giải

Vẽ đường cao AH của tam giác △ABC.

Trong tam giác △AHO vuông tại H, ta có:

AH≤AO

(dấu bằng xảy ra khi H trùng với O).

Diện tích tam giác:

SABC=12AHBC12AOBC=12R2R=R2S_{\triangle ABC} = \frac{1}{2} \cdot AH \cdot BC \leq \frac{1}{2} \cdot AO \cdot BC = \frac{1}{2} \cdot R \cdot 2R = R^2 

(dấu bằng xảy ra khi H trùng với O).

Vậy diện tích △ABC đạt giá trị lớn nhất khi H trùng với O.

Khi đó, A là điểm chính giữa cung BC không chứa O.

Do đó, ta suy ra:

ADC^=45.\widehat{ADC} = 45^\circ.

Bài tập nâng cao

Bài 3: Cho nửa đường tròn đường kính AB=2cm, dây CD//AB (Ccung AD). Tính độ dài các cạnh của hình thang ABCD biết chu vi hình thang bằng 5cm.

Cho nửa đường tròn đường kính AB=2cm, dây CD//AB (  C  ∈  c  u  n  g     A  D  ). Tính độ dài các cạnh của hình thang ABCD biết chu vi hình thang bằng 5cm.

Giải

Do CD//AB, ta có AC=BD, tức là AC=BD.

Tứ giác ACDB có AC//AB, nên là hình thang.

Ngoài ra, vì AC=BD, nên ACDB là hình thang cân.

Đặt AC=BD=x(x>0)AC = BD = x \, (x > 0).

Chu vi hình thang cân:

AB+BD+CD+AC=5⟹2+2x+CD=5⟹CD=3−2x.

Kẻ DN và CM vuông góc với AB.

Ta có:

NB=MA=ABCD2=2(32x)2=x12.NB = MA = \frac{AB - CD}{2} = \frac{2 - (3 - 2x)}{2} = x - \frac{1}{2}. 

Xét tam giác vuông △DAB, vuông tại D, với DN⊥AB:

BD2=BNAB    x2=(x12)2.BD^2 = BN \cdot AB \implies x^2 = \left(x - \frac{1}{2}\right) \cdot 2. 

Giải phương trình:

x2=2x1    x22x+1=0    (x1)2=0    x=1.x^2 = 2x - 1 \implies x^2 - 2x + 1 = 0 \implies (x - 1)^2 = 0 \implies x = 1. 

Vậy:

AC=BD=1cm,CD=3−2x=1cm.

Kết luận:
Các cạnh của hình thang ABCD là:

AB=2cm, AC=BD=1cm, CD=1cm.

Xem thêm: 

Khám phá mối liên hệ giữa cung và dây

Tổng hợp kiến thức vị trí tương đối của hai đường tròn 

Kết luận

Thông qua bài học hôm nay, góc nội tiếp là một kiến thức quan trọng trong chương trình học giúp ta rèn luyện khả năng tư duy logic và phân tích hình học. Việc hiểu rõ và vận dụng thành thạo các tính chất của góc nội tiếp sẽ là nền tảng vững chắc để bạn hiểu biết thêm những bài toán đường tròn khó hơn. Trung tâm gia sư online Học là Giỏi hy vọng bạn đã hiểu những kiến thức này và có thể vận dụng với các bài toán trong tương lai về góc nội tiếp trong hình tròn nhé.

 

Chủ đề:

Đăng ký học thử ngay hôm nay

Để con học sớm - Ôn sâu và nhận ưu đãi học phí!

Bài viết liên quan

Bí quyết ghi nhớ bảng nhân 4 qua các bài tập thú vị
schedule

Thứ ba, 11/3/2025 07:55 AM

Bí quyết ghi nhớ bảng nhân 4 qua các bài tập thú vị

Bảng nhân 4 là một trong những kiến thức quan trọng trong toán học tiểu học, giúp học sinh rèn luyện tư duy và kỹ năng tính nhẩm nhanh. Gia sư online Học là Giỏi sẽ giúp bạn nắm vững bảng nhân 4 trong bài viết để bạn áp dụng phép nhân đối với các bài tập một cách hiệu quả.

Học thuộc bảng nhân 3 chỉ trong vài phút
schedule

Thứ ba, 11/3/2025 06:54 AM

Học thuộc bảng nhân 3 chỉ trong vài phút

Bảng nhân 3 là một trong những bảng cửu chương quan trọng giúp chúng ta ghi nhớ phép nhân với số 3 dễ dàng. Trong bài viết dưới đây, gia sư online Học là Giỏi sẽ hướng dẫn chi tiết về bảng nhân 3 để bạn áp dụng phép nhân này hiệu quả nhé.

Bảng nhân 2 là gì? Các phép tính trong bảng nhân 2
schedule

Thứ hai, 10/3/2025 09:32 AM

Bảng nhân 2 là gì? Các phép tính trong bảng nhân 2

Bảng nhân 2 giúp bạn tính nhanh và giải toán dễ dàng hơn cho phép nhân với số 2. Trong bài viết dưới đây, gia sư online Học là Giỏi sẽ cung cấp chi tiết về bảng nhân 2 để bạn có thể nắm vững phép nhân này nhé.

Cách học bảng cửu chương nhân, chia nhanh chóng và hiệu quả
schedule

Thứ sáu, 7/3/2025 10:10 AM

Cách học bảng cửu chương nhân, chia nhanh chóng và hiệu quả

Bảng cửu chương là một công cụ tính toán giúp bạn giải quyết nhanh gọn mọi bài toán trong học tập và cuộc sống. Thành thạo bảng cửu chương hỗ trợ bạn tư duy logic, tính toán linh hoạt và áp dụng vào thực tế dễ dàng hơn. Gia sư online Học là Giỏi mang đến cho bạn bảng cửu chương chi tiết dưới đây để giúp việc ghi nhớ hay học thuộc trở nên dễ dàng và hiệu quả hơn.

Tổng hợp các dạng toán Vi-ét thi vào lớp 10 mới nhất
schedule

Thứ tư, 12/2/2025 06:38 AM

Tổng hợp các dạng toán Vi-ét thi vào lớp 10 mới nhất

Hệ thức Vi-ét là một công cụ quan trọng giúp giải nhanh các bài toán về nghiệm của phương trình bậc hai. Việc nắm vững các dạng toán Vi-ét thi vào lớp 10 sẽ giúp học sinh nâng cao tư duy toán học để dễ dàng giải đề thi. Hôm nay cùng gia sư online Học là Giỏi sẽ hệ thống lại các phương pháp, đưa ra ví dụ cụ thể để giúp bạn làm chủ dạng toán này một cách hiệu quả.

Tứ giác nội tiếp là gì? Tính chất của tứ giác nội tiếp
schedule

Thứ ba, 26/11/2024 09:39 AM

Tứ giác nội tiếp là gì? Tính chất của tứ giác nội tiếp

Tứ giác nội tiếp là một trong những khái niệm quan trọng trong hình học lớp 9, đặc biệt khi tìm hiểu về các mối quan hệ giữa các điểm và đường tròn. Hãy cùng gia sư online Học là Giỏi khám phá tứ giác nội tiếp này là gì và chúng có các tính chất như thế nào nhé.

message.svg zalo.png