Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức

Giải phương trình vô tỉ bằng cách nâng lên lũy thừa

schedule.svg

Thứ sáu, 10/5/2024 10:43 AM

Tác giả: Admin Hoclagioi

Phương trình vô tỉ là kiến thức khá hay và khó trong chương trình toán phổ thông. Một trong những cách giải phổ biến nhất là nâng lên lũy thừa. Vậy, hãy cùng Học là Giỏi hệ thống lại cách giải phương trình vô tỉ bằng phương pháp nâng lên lũy thừa nhé. Chúng mình bắt đầu nào!

Mục lục [Ẩn]

Dạng 1. $\sqrt{f(x)}=\sqrt{g(x)}$

Phương pháp giải

$\sqrt{f(x)}=\sqrt{g(x)}\Leftrightarrow\left\{\begin{array}{l}{\left[\begin{array}{l}g(x) \geq 0 \\ f(x) \geq 0\end{array}\right.} \\ f(x)=g(x)\end{array}\right.$ 

Ví dụ: Giải phương trình $\sqrt{3 x^2+69 x+27}=\sqrt{x^2+96 x+2}$.

Bài giải

$\sqrt{3 x^2+69 x+27}=\sqrt{x^2+96 x+2} \Leftrightarrow\left\{\begin{array}{l}x^2+96 x+2 \geq 0 \\ 3 x^2+69 x+27=x^2+96 x+2\end{array}\right.$$\Leftrightarrow\left[\begin{array}{l}x=1 (TM) \\ x=\dfrac{25}{2} (TM) \end{array}\right.$

Vậy phương trình có tập nghiệm là $S={1;\dfrac{25}{2}}$.

Dạng 2. $\sqrt[3]{f(x)}=\sqrt[3]{g(x)}$

Phương pháp giải

$\sqrt[3]{f(x)}=\sqrt[3]{g(x)} \Leftrightarrow f(x)=g(x)$

Ví dụ: Giải phương trình $\sqrt[3]{x^3-2 x^2+1}=\sqrt[3]{x^3-x}$.

Bài giải

Phương trình đã cho tương đương với:

$x^3-2 x^2+1=x^3-x \Leftrightarrow 2 x^2-x-1=0 \Leftrightarrow\left[\begin{array}{l}x=1\\ x=\dfrac{-1}{2} \end{array}\right.$

Dạng 3. $\sqrt{f(x)}=g(x)$

Phương pháp giải

$\sqrt{f(x)}=g(x) \Leftrightarrow\left\{\begin{array}{l}g(x) \geq 0 \\ f(x)=[g(x)]^2\end{array}\right.$

Ví dụ: Giải phương trình $\sqrt{2 x+1}=3 x+1$

Bài giải

$\sqrt{2 x+1}=3 x+1 \Leftrightarrow\left\{\begin{array}{l}3 x+1 \geq 0 \\ 2 x+1=(3 x+1)^2\end{array} \Leftrightarrow\left\{\begin{array}{l}x \geq-\frac{1}{3} \\ 9 x^2+4 x=0\end{array} \Leftrightarrow\left[\begin{array}{l}x=0 \\ x=-\frac{4}{9}\end{array}\right.\right.\right.$

Vậy phương trình có tập nghiệm là $S={0;-\dfrac{4}{9}}$.

Dạng 4. $\sqrt[3]{f(x)}=g(x)$

Phương pháp giải

$\sqrt[3]{f(x)}=g(x) \Leftrightarrow f(x)=[g(x)]^3$

Ví dụ: Giải phương trình $\sqrt[3]{7 x+1}=x+1$

Bài giải

Điều kiện xác định của phương trình là $x \in \mathbb{R}$. Phương trình đã cho tương đương

$7 x+1=x^3+3 x^2+3 x+1 \Leftrightarrow x^3+3 x^2-4 x=0 \Leftrightarrow(x-1)(x+4)=0 \Leftrightarrow x \in\{-4 ; 0 ; 1\}$

Vậy phương trình có tập nghiệm là $S=\{-4 ; 0 ; 1\}$.

Dạng 5. $\sqrt{f(x)}+\sqrt{g(x)}=\sqrt{h(x)}$

Phương pháp giải

+ Bước 1. Tìm điều kiện xác định của phương trình bằng việc giải hệ: $\left\{\begin{array}{l}f(c) \geq 0 \\ g(x) \geq 0 \\ h(x) \geq 0\end{array}\right.$

+ Bước 2. Bình phương hai vế của phương trình và đưa phương trình về dạng

$\sqrt{F(x)}=G(x) .$

+ Bước 3. Giải phương trình cơ bản $\sqrt{\mathrm{F}(\mathrm{x})}=\mathrm{G}(\mathrm{x})$ và kiểm tra sự thỏa mãn của nghiệm tìm được với điều kiện xác định của phương trình để kết luận.

Ví dụ: Giải phương trình $\sqrt{5 x^2+14 x+9}-\sqrt{x^2-x-20}=5 \sqrt{x+1}$.

Bài giải

Điều kiện xác định của phương trình là $x \geq 5$. Với điều kiện đó ta biến đối phương trình đã cho như sau

$\begin{aligned}& \sqrt{5 x^2+14 x+9}=\sqrt{x^2-x-20}+5 \sqrt{x+1} \\\Leftrightarrow & 5 x^2+14 x+9=x^2-x-20+25(x+1)+10 \sqrt{(x+1)(x+4)(x-5)} \\\Leftrightarrow & 2 x^2-5 x+2=5 \sqrt{(x+1)(x+4)(x-5)} \\\Leftrightarrow & 2(x+1)(x-5)+3(x+4)=5 \sqrt{(x+1)(x-5)}\cdot \sqrt{x+4}\end{aligned}$

Đặt $\sqrt{(x+1)(x-5)}=y ; \sqrt{x+4}=z$ với $y \geq 0 ; z \geq 3$.

Ta được $2 y^2+3 z^2=5 y z \Leftrightarrow(y-z)(2 y-3 z)=0 \Leftrightarrow\left[\begin{array}{l}y=z \\ 2 y=3 z\end{array}\right.$

- Nếu $y=z$ thì ta được $x=\frac{5+\sqrt{61}}{2}$ (do $x \geq 5$ ).

- Nếu $2y=3 z$ thì ta được $x=8 ;x=-\frac{7}{4}$.

Kết hợp với điều kiện xác định ta có tập nghiệm là $S=\left\{\frac{5+\sqrt{61}}{2} ; 8 ;-\frac{7}{4}\right\}$.

Dạng 6. $\sqrt[3]{f(x)}+\sqrt[3]{g(x)}=\sqrt[3]{h(x)}$

Phương pháp giải

+ Bước 1. Lũy thừa bậc ba hai vế của phương trình thì được

$f(x)+g(x)+3 \sqrt[3]{f(x) \cdot g(x)}(\sqrt[3]{f(x)}+\sqrt[3]{g(x)})=h(x)$

+ Bước 2. Biến đổi phương trình và chú ý đến $\sqrt[3]{\mathrm{f}(\mathrm{x})}+\sqrt[3]{\mathrm{g}(\mathrm{x})}=\sqrt[3]{\mathrm{h}(\mathrm{x})}$ ta được

$3 \sqrt[3]{f(x) \cdot g(x) \cdot h(x)}=h(x)-f(x)-g(x)$

+ Bước 3. Tiếp tục lũy thừa bậc ba hai vế thì được phương trình

$27 \cdot f(x) \cdot g(x) \cdot h(x)=[h(x)-f(x)-g(x)]^3$

Ví dụ: Giải phương trình $\sqrt[3]{2 x-1}+\sqrt[3]{x}=\sqrt[3]{x-1}$.

Bài giải

Phương trình đã cho tương đương với:

$\begin{aligned}& (\sqrt[3]{x-1}+\sqrt[3]{x-2})^3=2 x-3 \Leftrightarrow 3 \sqrt[3]{(x-1)(x-2)}(\sqrt[3]{x-1}+\sqrt[3]{x-2})=0 \\& \Rightarrow 3 \sqrt[3]{(x-1)(x-2)(2 x-3)}=0 \Leftrightarrow\left[\begin{array}{c}x=1 \\x=2 \\x=\frac{3}{2}\end{array}\right.\end{aligned}$.

Thử lại ta thấy các giá trị $x=1 ; x=2 ; x=\frac{3}{2}$ đều thỏa mãn phương trình đã cho. Vậy tập nghiệm của phương trình đã cho là $S=\left\{1 ; 2 ; \frac{3}{2}\right\}$.

Dạng 7. $\sqrt{f(x)}+\sqrt{g(x)}=\sqrt{h(x)}+\sqrt{r(x)}$

$\sqrt{f(x)}+\sqrt{g(x)}=\sqrt{h(x)}+\sqrt{r(x)}$, trong đó xảy ra một trong các trường hợp sau:

$\begin{aligned}& +\sqrt{f(x) \cdot g(x)}=\sqrt{h(x) \cdot r(x)} \\& +\sqrt{f(x) \cdot u(x)}=\sqrt{g(x) \cdot r(x)} \\& +f(x)+g(x)=h(x)+r(x)\end{aligned}$

Phương pháp giải

+ Nếu có $\sqrt{\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})}=\sqrt{\mathrm{h}(\mathrm{x}) \cdot \mathrm{r}(\mathrm{x})}$ thì sử dụng phép biến đổi tương đương

$[\sqrt{f(x)}+\sqrt{g(x)}]^2=[\sqrt{h(x)}+\sqrt{r(x)}]^2$

+ Nếu có $\sqrt{\mathrm{f}(\mathrm{x}) \cdot \mathrm{u}(\mathrm{x})}=\sqrt{\mathrm{g}(\mathrm{x}) \cdot \mathrm{r}(\mathrm{x})}$ thì sử dụng phép biến đổi hệ quả

$[\sqrt{f(x)}-\sqrt{u(x)}]^2=[\sqrt{g(x)}-\sqrt{r(x)}]^2$

+ Nếu có $\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})=\mathrm{h}(\mathrm{x})+\mathrm{r}(\mathrm{x})$ thì sử dụng phép biến đổi tương đương

$[\sqrt{f(x)}+\sqrt{g(x)}]^2=[\sqrt{h(x)}+\sqrt{r(x)}]^2$

Ví dụ 1: Giải phương trình: $\sqrt{\frac{x^3+1}{x+3}}+\sqrt{x+3}=\sqrt{x^2-x+1}+\sqrt{x+1}$.

Bài giải

Điều kiện $x \geq-1$. Phương trình đā cho tương đương với:

$\begin{aligned}& \left(\sqrt{\frac{x^3+1}{x+3}}+\sqrt{x+3}\right)^2=\left(\sqrt{x^2-x+1}+\sqrt{x+1}\right)^2 \Leftrightarrow \frac{x^3+1}{x+3}+2 \sqrt{x^3+1}+(x+3)=\left(x^2-x+1\right)+ \\& 2 \sqrt{(x+1)\left(x^2-x+1\right)}+(x+1) \Leftrightarrow \frac{x^3+1}{x+3}=x^2-x-1 \Leftrightarrow x^2-2 x-2=0 \Leftrightarrow x=1 \pm \sqrt{3} .\end{aligned}$

Vậy tập nghiệm của phương trình đā cho là $S=\{1-\sqrt{3} ; 1+\sqrt{3}\}$.

Ví dụ 2: Giải phương trình:

$\sqrt{\frac{x^3+8}{2 x+1}}+\sqrt{x+2}=\sqrt{x^2-2 x+4}+\sqrt{2 x+1}$.

Bài giải

Điều kiện $x>-\frac{1}{2}$. Phương trình đā cho tương đương với:

$\begin{aligned}& \sqrt{\frac{x^3+8}{2 x+1}}-\sqrt{2 x+1}=\sqrt{x^2-2 x+4}-\sqrt{x+2} \Rightarrow \frac{x^3+8}{2 x+1}-2 \sqrt{x^3+8}+(2 x+1)=\left(x^2-2 x+4\right)- \\

& 2 \sqrt{(x+2)\left(x^2-2 x+4\right)}+(x+2) \Leftrightarrow x^3-5 x^2+7 x-3=0 \Leftrightarrow\left[\begin{array}{l}x=1 \\x=3\end{array}\right.\end{aligned}$

Thử lại ta thấy nghiệm của phương trình đā cho chỉ có giá trị $x=1$.

Ví dụ 3: Giải phương trình: $\sqrt{x+3}+\sqrt{3 x+1}=2 \sqrt{x}+\sqrt{2 x+2}$.

Bài giải

Nhận xét: Ta thấy $(x+3)+4 x=(3 x+1)+(2 x+2)$ nếu ta biến đổi phương trình về dạng: $\sqrt{x+3}-$ $\sqrt{4 x}=\sqrt{2 x+2}-\sqrt{3 x+1}$ và nâng lên lūy thừa với phép biến đổi hệ quả.

Điều kiện $x \geq 0$. Phương trình đã cho tương đương với:

$\begin{aligned}& \sqrt{x+3}-\sqrt{4 x}=\sqrt{2 x+2}-\sqrt{3 x+1} \Rightarrow 5 x+3-2 \sqrt{4 x(x+3)}=5 x+3-2 \sqrt{(2 x+2)(3 x+1)} \\& \Leftrightarrow \sqrt{4 x(x+3)}=\sqrt{(2 x+2)(3 x+1)} \Leftrightarrow x^2-2 x+1=0 \Leftrightarrow x=1\end{aligned}$

Thử lại ta thấy $x=1$ thỏa mān phương trình ban đầu.

Như vậy, Học là Giỏi đã hệ thống lại các dạng bài tập giải phương trình bằng phương pháp nâng lên lũy thừa. Học là Giỏi hi vọng rằng, nó sẽ giúp ích cho các bạn trong việc giải phương trình vô tỉ nhé . Chúng các bạn học tốt!

Xem thêm:

Làm thế nào để giải hệ phương trình bậc nhất hai ẩn?

Cách giải phương trình bậc hai một ẩn và ứng dụng của nó

Chủ đề:

Đăng ký học thử ngay hôm nay

Để con học sớm - Ôn sâu và nhận ưu đãi học phí!

Bài viết liên quan

Tứ giác nội tiếp là gì? Tính chất của tứ giác nội tiếp
schedule

Thứ ba, 26/11/2024 09:39 AM

Tứ giác nội tiếp là gì? Tính chất của tứ giác nội tiếp

Tứ giác nội tiếp là một trong những khái niệm quan trọng trong hình học lớp 9, đặc biệt khi tìm hiểu về các mối quan hệ giữa các điểm và đường tròn. Hãy cùng gia sư online Học là Giỏi khám phá tứ giác nội tiếp này là gì và chúng có các tính chất như thế nào nhé.

Khám phá lý thuyết về cung chứa góc toán 9
schedule

Thứ ba, 26/11/2024 04:35 AM

Khám phá lý thuyết về cung chứa góc toán 9

Khái niệm cung chứa góc ở trong toán lớp 9 đóng vai trò quan trọng khi tìm hiểu các tính chất và bài toán liên quan đến hình tròn. Cùng gia sư online Học là Giỏi đi sâu vào khái niệm và tính chất về cung chứa góc của đường tròn nhé.

Tìm hiểu góc có đỉnh ở bên trong đường tròn, bên ngoài đường tròn
schedule

Thứ hai, 25/11/2024 09:30 AM

Tìm hiểu góc có đỉnh ở bên trong đường tròn, bên ngoài đường tròn

Góc có đỉnh nằm bên trong đường tròn hoặc bên ngoài đường tròn mang đến những đặc điểm và tính chất riêng. Việc tìm hiểu về các loại góc này hỗ trợ rất nhiều trong việc giải quyết các bài toán hình học phức tạp. Hãy cùng gia sư online Học là Giỏi khám phá những khái niệm và định lý về góc có đỉnh nằm bên trong và bên ngoài đường tròn nhé.

Chinh phục kiến thức về góc nội tiếp
schedule

Thứ sáu, 22/11/2024 09:18 AM

Chinh phục kiến thức về góc nội tiếp

Trong hình tròn, góc nội tiếp là một chủ đề cơ bản khi chúng có nhiều tính chất cần lưu ý trong hình học phẳng. Đây là khái niệm giúp chúng ta hiểu thêm các định lý liên quan đến đường tròn. Cùng gia sư online Học là Giỏi tìm hiểu về góc nội tiếp có gì đặc biệt và những nội dung quan trọng trong bài học này nhé.

Khám phá mối liên hệ giữa cung và dây
schedule

Thứ ba, 19/11/2024 10:06 AM

Khám phá mối liên hệ giữa cung và dây

Mối liên hệ giữa cung và dây cung của đường tròn là chủ đề quan trọng trong chương trình hình học lớp 9. Dù chúng ta đã quá quen thuộc với hình ảnh những đường tròn, ít ai biết rằng cung và dây cung tạo sự liên kết mật thiết trong hình tròn. Hãy cùng gia sư online Học là Giỏi tìm hiểu rõ mối quan hệ này có gì đặc biệt nhé.

Tổng hợp kiến thức vị trí tương đối của hai đường tròn
schedule

Thứ hai, 18/11/2024 10:07 AM

Tổng hợp kiến thức vị trí tương đối của hai đường tròn

Vị trí tương đối của hai đường tròn là kiến thức quan trọng để xét các tính chất của 2 đường tròn này có mối quan hệ gì với nhau. Hãy cùng gia sư online Học là Giỏi khám phá các trường hợp cơ bản về vị trí tương đối của hai đường tròn này nhé.

message.svg zalo.png