Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Thứ sáu, 10/5/2024 10:43 AM
Tác giả: Admin Hoclagioi
Phương trình vô tỉ là kiến thức khá hay và khó trong chương trình toán phổ thông. Một trong những cách giải phổ biến nhất là nâng lên lũy thừa. Vậy, hãy cùng Học là Giỏi hệ thống lại cách giải phương trình vô tỉ bằng phương pháp nâng lên lũy thừa nhé. Chúng mình bắt đầu nào!
Mục lục [Ẩn]
Phương pháp giải
$\sqrt{f(x)}=\sqrt{g(x)}\Leftrightarrow\left\{\begin{array}{l}{\left[\begin{array}{l}g(x) \geq 0 \\ f(x) \geq 0\end{array}\right.} \\ f(x)=g(x)\end{array}\right.$
Ví dụ: Giải phương trình $\sqrt{3 x^2+69 x+27}=\sqrt{x^2+96 x+2}$.
Bài giải
$\sqrt{3 x^2+69 x+27}=\sqrt{x^2+96 x+2} \Leftrightarrow\left\{\begin{array}{l}x^2+96 x+2 \geq 0 \\ 3 x^2+69 x+27=x^2+96 x+2\end{array}\right.$$\Leftrightarrow\left[\begin{array}{l}x=1 (TM) \\ x=\dfrac{25}{2} (TM) \end{array}\right.$
Vậy phương trình có tập nghiệm là $S={1;\dfrac{25}{2}}$.
Phương pháp giải
$\sqrt[3]{f(x)}=\sqrt[3]{g(x)} \Leftrightarrow f(x)=g(x)$
Ví dụ: Giải phương trình $\sqrt[3]{x^3-2 x^2+1}=\sqrt[3]{x^3-x}$.
Bài giải
Phương trình đã cho tương đương với:
$x^3-2 x^2+1=x^3-x \Leftrightarrow 2 x^2-x-1=0 \Leftrightarrow\left[\begin{array}{l}x=1\\ x=\dfrac{-1}{2} \end{array}\right.$
Phương pháp giải
$\sqrt{f(x)}=g(x) \Leftrightarrow\left\{\begin{array}{l}g(x) \geq 0 \\ f(x)=[g(x)]^2\end{array}\right.$
Ví dụ: Giải phương trình $\sqrt{2 x+1}=3 x+1$
Bài giải
$\sqrt{2 x+1}=3 x+1 \Leftrightarrow\left\{\begin{array}{l}3 x+1 \geq 0 \\ 2 x+1=(3 x+1)^2\end{array} \Leftrightarrow\left\{\begin{array}{l}x \geq-\frac{1}{3} \\ 9 x^2+4 x=0\end{array} \Leftrightarrow\left[\begin{array}{l}x=0 \\ x=-\frac{4}{9}\end{array}\right.\right.\right.$
Vậy phương trình có tập nghiệm là $S={0;-\dfrac{4}{9}}$.
Phương pháp giải
$\sqrt[3]{f(x)}=g(x) \Leftrightarrow f(x)=[g(x)]^3$
Ví dụ: Giải phương trình $\sqrt[3]{7 x+1}=x+1$
Bài giải
Điều kiện xác định của phương trình là $x \in \mathbb{R}$. Phương trình đã cho tương đương
$7 x+1=x^3+3 x^2+3 x+1 \Leftrightarrow x^3+3 x^2-4 x=0 \Leftrightarrow(x-1)(x+4)=0 \Leftrightarrow x \in\{-4 ; 0 ; 1\}$
Vậy phương trình có tập nghiệm là $S=\{-4 ; 0 ; 1\}$.
Phương pháp giải
+ Bước 1. Tìm điều kiện xác định của phương trình bằng việc giải hệ: $\left\{\begin{array}{l}f(c) \geq 0 \\ g(x) \geq 0 \\ h(x) \geq 0\end{array}\right.$
+ Bước 2. Bình phương hai vế của phương trình và đưa phương trình về dạng
$\sqrt{F(x)}=G(x) .$
+ Bước 3. Giải phương trình cơ bản $\sqrt{\mathrm{F}(\mathrm{x})}=\mathrm{G}(\mathrm{x})$ và kiểm tra sự thỏa mãn của nghiệm tìm được với điều kiện xác định của phương trình để kết luận.
Ví dụ: Giải phương trình $\sqrt{5 x^2+14 x+9}-\sqrt{x^2-x-20}=5 \sqrt{x+1}$.
Bài giải
Điều kiện xác định của phương trình là $x \geq 5$. Với điều kiện đó ta biến đối phương trình đã cho như sau
$\begin{aligned}& \sqrt{5 x^2+14 x+9}=\sqrt{x^2-x-20}+5 \sqrt{x+1} \\\Leftrightarrow & 5 x^2+14 x+9=x^2-x-20+25(x+1)+10 \sqrt{(x+1)(x+4)(x-5)} \\\Leftrightarrow & 2 x^2-5 x+2=5 \sqrt{(x+1)(x+4)(x-5)} \\\Leftrightarrow & 2(x+1)(x-5)+3(x+4)=5 \sqrt{(x+1)(x-5)}\cdot \sqrt{x+4}\end{aligned}$
Đặt $\sqrt{(x+1)(x-5)}=y ; \sqrt{x+4}=z$ với $y \geq 0 ; z \geq 3$.
Ta được $2 y^2+3 z^2=5 y z \Leftrightarrow(y-z)(2 y-3 z)=0 \Leftrightarrow\left[\begin{array}{l}y=z \\ 2 y=3 z\end{array}\right.$
- Nếu $y=z$ thì ta được $x=\frac{5+\sqrt{61}}{2}$ (do $x \geq 5$ ).
- Nếu $2y=3 z$ thì ta được $x=8 ;x=-\frac{7}{4}$.
Kết hợp với điều kiện xác định ta có tập nghiệm là $S=\left\{\frac{5+\sqrt{61}}{2} ; 8 ;-\frac{7}{4}\right\}$.
Phương pháp giải
+ Bước 1. Lũy thừa bậc ba hai vế của phương trình thì được
$f(x)+g(x)+3 \sqrt[3]{f(x) \cdot g(x)}(\sqrt[3]{f(x)}+\sqrt[3]{g(x)})=h(x)$
+ Bước 2. Biến đổi phương trình và chú ý đến $\sqrt[3]{\mathrm{f}(\mathrm{x})}+\sqrt[3]{\mathrm{g}(\mathrm{x})}=\sqrt[3]{\mathrm{h}(\mathrm{x})}$ ta được
$3 \sqrt[3]{f(x) \cdot g(x) \cdot h(x)}=h(x)-f(x)-g(x)$
+ Bước 3. Tiếp tục lũy thừa bậc ba hai vế thì được phương trình
$27 \cdot f(x) \cdot g(x) \cdot h(x)=[h(x)-f(x)-g(x)]^3$
Ví dụ: Giải phương trình $\sqrt[3]{2 x-1}+\sqrt[3]{x}=\sqrt[3]{x-1}$.
Bài giải
Phương trình đã cho tương đương với:
$\begin{aligned}& (\sqrt[3]{x-1}+\sqrt[3]{x-2})^3=2 x-3 \Leftrightarrow 3 \sqrt[3]{(x-1)(x-2)}(\sqrt[3]{x-1}+\sqrt[3]{x-2})=0 \\& \Rightarrow 3 \sqrt[3]{(x-1)(x-2)(2 x-3)}=0 \Leftrightarrow\left[\begin{array}{c}x=1 \\x=2 \\x=\frac{3}{2}\end{array}\right.\end{aligned}$.
Thử lại ta thấy các giá trị $x=1 ; x=2 ; x=\frac{3}{2}$ đều thỏa mãn phương trình đã cho. Vậy tập nghiệm của phương trình đã cho là $S=\left\{1 ; 2 ; \frac{3}{2}\right\}$.
$\sqrt{f(x)}+\sqrt{g(x)}=\sqrt{h(x)}+\sqrt{r(x)}$, trong đó xảy ra một trong các trường hợp sau:
$\begin{aligned}& +\sqrt{f(x) \cdot g(x)}=\sqrt{h(x) \cdot r(x)} \\& +\sqrt{f(x) \cdot u(x)}=\sqrt{g(x) \cdot r(x)} \\& +f(x)+g(x)=h(x)+r(x)\end{aligned}$
Phương pháp giải
+ Nếu có $\sqrt{\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})}=\sqrt{\mathrm{h}(\mathrm{x}) \cdot \mathrm{r}(\mathrm{x})}$ thì sử dụng phép biến đổi tương đương
$[\sqrt{f(x)}+\sqrt{g(x)}]^2=[\sqrt{h(x)}+\sqrt{r(x)}]^2$
+ Nếu có $\sqrt{\mathrm{f}(\mathrm{x}) \cdot \mathrm{u}(\mathrm{x})}=\sqrt{\mathrm{g}(\mathrm{x}) \cdot \mathrm{r}(\mathrm{x})}$ thì sử dụng phép biến đổi hệ quả
$[\sqrt{f(x)}-\sqrt{u(x)}]^2=[\sqrt{g(x)}-\sqrt{r(x)}]^2$
+ Nếu có $\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})=\mathrm{h}(\mathrm{x})+\mathrm{r}(\mathrm{x})$ thì sử dụng phép biến đổi tương đương
$[\sqrt{f(x)}+\sqrt{g(x)}]^2=[\sqrt{h(x)}+\sqrt{r(x)}]^2$
Ví dụ 1: Giải phương trình: $\sqrt{\frac{x^3+1}{x+3}}+\sqrt{x+3}=\sqrt{x^2-x+1}+\sqrt{x+1}$.
Bài giải
Điều kiện $x \geq-1$. Phương trình đā cho tương đương với:
$\begin{aligned}& \left(\sqrt{\frac{x^3+1}{x+3}}+\sqrt{x+3}\right)^2=\left(\sqrt{x^2-x+1}+\sqrt{x+1}\right)^2 \Leftrightarrow \frac{x^3+1}{x+3}+2 \sqrt{x^3+1}+(x+3)=\left(x^2-x+1\right)+ \\& 2 \sqrt{(x+1)\left(x^2-x+1\right)}+(x+1) \Leftrightarrow \frac{x^3+1}{x+3}=x^2-x-1 \Leftrightarrow x^2-2 x-2=0 \Leftrightarrow x=1 \pm \sqrt{3} .\end{aligned}$
Vậy tập nghiệm của phương trình đā cho là $S=\{1-\sqrt{3} ; 1+\sqrt{3}\}$.
Ví dụ 2: Giải phương trình:
$\sqrt{\frac{x^3+8}{2 x+1}}+\sqrt{x+2}=\sqrt{x^2-2 x+4}+\sqrt{2 x+1}$.
Bài giải
Điều kiện $x>-\frac{1}{2}$. Phương trình đā cho tương đương với:
$\begin{aligned}& \sqrt{\frac{x^3+8}{2 x+1}}-\sqrt{2 x+1}=\sqrt{x^2-2 x+4}-\sqrt{x+2} \Rightarrow \frac{x^3+8}{2 x+1}-2 \sqrt{x^3+8}+(2 x+1)=\left(x^2-2 x+4\right)- \\
& 2 \sqrt{(x+2)\left(x^2-2 x+4\right)}+(x+2) \Leftrightarrow x^3-5 x^2+7 x-3=0 \Leftrightarrow\left[\begin{array}{l}x=1 \\x=3\end{array}\right.\end{aligned}$
Thử lại ta thấy nghiệm của phương trình đā cho chỉ có giá trị $x=1$.
Ví dụ 3: Giải phương trình: $\sqrt{x+3}+\sqrt{3 x+1}=2 \sqrt{x}+\sqrt{2 x+2}$.
Bài giải
Nhận xét: Ta thấy $(x+3)+4 x=(3 x+1)+(2 x+2)$ nếu ta biến đổi phương trình về dạng: $\sqrt{x+3}-$ $\sqrt{4 x}=\sqrt{2 x+2}-\sqrt{3 x+1}$ và nâng lên lūy thừa với phép biến đổi hệ quả.
Điều kiện $x \geq 0$. Phương trình đã cho tương đương với:
$\begin{aligned}& \sqrt{x+3}-\sqrt{4 x}=\sqrt{2 x+2}-\sqrt{3 x+1} \Rightarrow 5 x+3-2 \sqrt{4 x(x+3)}=5 x+3-2 \sqrt{(2 x+2)(3 x+1)} \\& \Leftrightarrow \sqrt{4 x(x+3)}=\sqrt{(2 x+2)(3 x+1)} \Leftrightarrow x^2-2 x+1=0 \Leftrightarrow x=1\end{aligned}$
Thử lại ta thấy $x=1$ thỏa mān phương trình ban đầu.
Như vậy, Học là Giỏi đã hệ thống lại các dạng bài tập giải phương trình bằng phương pháp nâng lên lũy thừa. Học là Giỏi hi vọng rằng, nó sẽ giúp ích cho các bạn trong việc giải phương trình vô tỉ nhé . Chúng các bạn học tốt!
Xem thêm:
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Bí kíp chinh phục các hằng đẳng thức mở rộng
Thứ tư, 14/8/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Thể thơ song thất lục bát trong văn chương Việt Nam
Thứ ba, 28/5/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ ba, 26/11/2024 09:39 AM
Tứ giác nội tiếp là gì? Tính chất của tứ giác nội tiếp
Tứ giác nội tiếp là một trong những khái niệm quan trọng trong hình học lớp 9, đặc biệt khi tìm hiểu về các mối quan hệ giữa các điểm và đường tròn. Hãy cùng gia sư online Học là Giỏi khám phá tứ giác nội tiếp này là gì và chúng có các tính chất như thế nào nhé.
Thứ ba, 26/11/2024 04:35 AM
Khám phá lý thuyết về cung chứa góc toán 9
Khái niệm cung chứa góc ở trong toán lớp 9 đóng vai trò quan trọng khi tìm hiểu các tính chất và bài toán liên quan đến hình tròn. Cùng gia sư online Học là Giỏi đi sâu vào khái niệm và tính chất về cung chứa góc của đường tròn nhé.
Thứ hai, 25/11/2024 09:30 AM
Tìm hiểu góc có đỉnh ở bên trong đường tròn, bên ngoài đường tròn
Góc có đỉnh nằm bên trong đường tròn hoặc bên ngoài đường tròn mang đến những đặc điểm và tính chất riêng. Việc tìm hiểu về các loại góc này hỗ trợ rất nhiều trong việc giải quyết các bài toán hình học phức tạp. Hãy cùng gia sư online Học là Giỏi khám phá những khái niệm và định lý về góc có đỉnh nằm bên trong và bên ngoài đường tròn nhé.
Thứ sáu, 22/11/2024 09:18 AM
Chinh phục kiến thức về góc nội tiếp
Trong hình tròn, góc nội tiếp là một chủ đề cơ bản khi chúng có nhiều tính chất cần lưu ý trong hình học phẳng. Đây là khái niệm giúp chúng ta hiểu thêm các định lý liên quan đến đường tròn. Cùng gia sư online Học là Giỏi tìm hiểu về góc nội tiếp có gì đặc biệt và những nội dung quan trọng trong bài học này nhé.
Thứ ba, 19/11/2024 10:06 AM
Khám phá mối liên hệ giữa cung và dây
Mối liên hệ giữa cung và dây cung của đường tròn là chủ đề quan trọng trong chương trình hình học lớp 9. Dù chúng ta đã quá quen thuộc với hình ảnh những đường tròn, ít ai biết rằng cung và dây cung tạo sự liên kết mật thiết trong hình tròn. Hãy cùng gia sư online Học là Giỏi tìm hiểu rõ mối quan hệ này có gì đặc biệt nhé.
Thứ hai, 18/11/2024 10:07 AM
Tổng hợp kiến thức vị trí tương đối của hai đường tròn
Vị trí tương đối của hai đường tròn là kiến thức quan trọng để xét các tính chất của 2 đường tròn này có mối quan hệ gì với nhau. Hãy cùng gia sư online Học là Giỏi khám phá các trường hợp cơ bản về vị trí tương đối của hai đường tròn này nhé.