Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Phương trình chứa dấu giá trị tuyệt đối không chỉ đơn thuần là một phép toán, mà còn là một cách nhìn nhận khoảng cách, cho phép chúng ta hiểu rõ hơn về mối quan hệ giữa các số và vị trí của chúng trên trục số. Trong bài viết này, gia sư online Học là Giỏi sẽ cùng nhau khám phá những kiến thức cần thiết về giá trị tuyệt đối, cách giải các phương trình chứa nó và thực hành với những bài tập từ cơ bản đến nâng cao.
Mục lục [Ẩn]
Giá trị tuyệt đối là gì? Giá trị tuyệt đối là cách chúng ta đo khoảng cách của một số, một biểu thức đến số 0 mà không quan tâm nó nằm ở bên trái hay bên phải của trục số. Dưới đây là giá trị tuyệt đối của số thực và của hàm số.
Xét một số thực với số a, ta có:
Trường hợp 1: a=a nếu a0
Trường hợp 2: a= -a nếu a<0
Với đa thức ta có:
Trường hợp 1: f(x)=f(x) nếu f(x)0
Trường hợp 2: f(x)= -f(x) nếu f(x)<0
Việc giải phương trình chứa dấu giá trị tuyệt đối có thể khiến nhiều người cảm thấy bối rối. Dưới đây là các bước hướng dẫn chi tiết để giải phương trình:
Bước 1: Áp dụng định nghĩa của giá trị tuyệt đối
Giá trị tuyệt đối của một số không gì khác ngoài khoảng cách của số đó so với 0 trên trục số. Từ đây, nếu bạn có một phương trình dạng ∣A∣=B, thì bạn sẽ tách thành hai trường hợp:
Trường hợp 1: Khi A ≥ 0, ta có A=B.
Trường hợp 2: Khi A<0, ta có −A=B.
Việc xác định các trường hợp này là rất quan trọng, bởi vì nó giúp chúng ta bỏ dấu giá trị tuyệt đối một cách hợp lý.
Bước 2: Giải các phương trình tương ứng không có dấu giá trị tuyệt đối
Mỗi trường hợp sẽ dẫn đến một phương trình khác nhau, và nhiệm vụ của bạn là giải quyết chúng như cách bạn giải các phương trình thông thường. Đừng quên kiểm tra các điều kiện của trường hợp để đảm bảo rằng nghiệm bạn tìm được thực sự hợp lệ.
Bước 3: Dựa trên từng trường hợp xét, chọn ra các nghiệm phù hợp
Khi có được một hoặc nhiều nghiệm từ từng trường hợp, hãy xem xét điều kiện ban đầu mà chúng ta đã đặt ra. Một số nghiệm có thể không thỏa mãn điều kiện đó, hãy thử thay nghiệm vào phương trình gốc xem có đúng hay không.
Bước 4: Kết luận nghiệm
Cuối cùng, hãy tổng kết lại những nghiệm nào đã thỏa mãn tất cả điều kiện mà bạn đã đưa ra.
Ví dụ:
Giải phương trình ∣2x−4∣=6
1. Tách trường hợp:
Trường hợp 1: 2x−4=6
Trường hợp 2: 2x−4=−6
2. Giải từng trường hợp:
Với trường hợp 1:
2x−4=6
⇒2x=10
⇒x=5
Với trường hợp 2:
2x−4=−6
⇒2x=−2
⇒x=−1
3. Kiểm tra điều kiện:
Cả hai nghiệm x=5 và x=−1 đều không vi phạm điều kiện ban đầu.
4. Kết luận:
Nghiệm của phương trình là x=5 và x=−1.
Giá trị tuyệt đối có thể gây ra chút bối rối nhưng nếu bạn nắm bắt được các dạng toán thì sẽ dễ dàng giải được các bài toán khó. Dưới đây là một số dạng toán liên quan đến dấu giá trị tuyệt đối và cách giải chúng.
a. Để giải phương trình chứa dấu giá trị tuyệt đối dạng ∣A(x)∣=B(x), ta cần loại bỏ dấu giá trị tuyệt đối bằng cách xét hai trường hợp:
Trường hợp 1: Khi A(x)≥0, ta có phương trình A(x)=B(x).
Trường hợp 2: Khi A(x)<0, ta có phương trình −A(x)=B(x).
b. Với phương trình dạng ∣A(x)∣=m (với m>0), ta có:
∣A(x)∣ = m ⇔ A(x) = m hoặc A(x) = −m
c. Đối với phương trình dạng |A(x)| = |B(x)|, ta cần xét:
|A(x)| = |B(x)| ⇔ A(x) = B(x) hoặc A(x) = −B(x).
d. Khi gặp phương trình chứa nhiều dấu giá trị tuyệt đối, chúng ta thực hiện theo các bước sau:
Lập bảng xét dấu: Xác định dấu của các biểu thức trong dấu giá trị tuyệt đối.
Phá dấu giá trị tuyệt đối: Dựa vào bảng xét dấu để chia phương trình thành các trường hợp tương ứng.
Giải và so sánh: Giải các phương trình trong từng trường hợp, sau đó so sánh với điều kiện để chọn ra nghiệm phù hợp.
Phương trình chứa dấu giá trị tuyệt đối sẽ giúp ta cải thiện kĩ năng giải các bài tập đại số, dưới đây là hai dạng bài tập cơ bản và nâng cao.
Bài 1:
∣x−5∣=3
Đây là bài tập đơn giản nhất, và nó chỉ đòi hỏi bạn phá vỡ dấu giá trị tuyệt đối bằng cách chia thành hai trường hợp:
x−5=3 ⇔ x=8,
x−5=−3 ⇔ x=2.
Vậy là, bài toán này cho ta hai nghiệm: x=8 hoặc x=2.
Bài 2:
∣2x+1∣=7
Tương tự như bài trước, bạn chỉ cần chia nhỏ phương trình thành hai trường hợp:
2x+1=7 ⇔ x=3,
2x+1=−7 ⇔ x=−4.
Vậy là, phương trình này cũng cho hai nghiệm: x=3 và x=−4.
Bài 3: Giải phương trình ∣2x−5∣=3
Ở đây, bạn lại có hai trường hợp. Nếu 2x−5≥0:
2x−5=3 ⟹ 2x=8 ⟹ x=4.
Còn khi 2x−5<0:
−(2x−5)=3 ⟹ −2x+5=3 ⟹ −2x=−2 ⟹ x=1.
Vậy nghiệm cho bài này là x=4 và x=1.
Bài 4:
∣x−2∣+∣x+3∣=7
Xác định các mốc quan trọng của x, đó là x=2 và x=−3, vì ở hai điểm này giá trị tuyệt đối sẽ thay đổi. Chúng ta chia thành ba trường hợp:
Trường hợp 1: x<−3: Lúc này, cả hai biểu thức x−2 và x+3 đều âm, nên:
−(x−2)−(x+3)=7
Giải phương trình này sẽ không cho nghiệm phù hợp.
Trường hợp 2: −3≤x≤2: Biểu thức x−2 là âm và x+3 là dương, ta có:
−(x−2)+(x+3)=7
Giải phương trình này ra, ta có nghiệm x=−1.
Trường hợp 3: x>2: Lúc này, cả hai biểu thức x−2 và x+3 đều dương, nên:
(x−2)+(x+3)=7
Giải phương trình này, ta có nghiệm x=3.
Vậy, nghiệm của bài toán này là x=−1 và x=3.
Bài 5:
∣−4∣=5
Để giải bài này, bạn cũng chia thành hai trường hợp:
Trường hợp 1: −4=5 ⇔ =9, từ đó ta có x=3 hoặc x=−3.
Trường hợp 2: −4=−5 ⇔ =−1, nhưng điều này vô lý vì không có số thực nào có bình phương âm. Vậy trường hợp này vô nghiệm.
Vậy, nghiệm của bài toán là x=3 và x=−3.
Bài 6: Giải phương trình ∣−1∣=3
Để giải, chúng ta sẽ xét hai trường hợp:
Trường hợp 1: Khi −1≥0:
−1=3 ⟹ =4 ⟹ x=2 hoặc x=−2.
Trường hợp 2: Khi −1<0:
−(−1)=3 ⟹ −+1=3 ⟹ −=2 (vô lý)
Nghiệm cho bài này là x=2 và x=−2.
Xem thêm:
Giải bài toán bằng cách lập phương trình
Như vậy, phương trình chứa dấu giá trị tuyệt đối là một phương pháp toán học hữu ích giúp chúng ta đơn giản hóa và giải quyết các bài toán phức tạp. Từ việc xác định khoảng cách cho đến việc phân tích các phương trình, nó giúp ta có cái nhìn rõ ràng hơn về các số và hàm số. Trung tâm gia sư online Học là Giỏi hy vọng rằng qua những kiến thức và bài tập vừa được trình bày, bạn sẽ cảm thấy tự tin hơn trong việc làm quen và vận dụng giá trị tuyệt đối trong toán học.
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Bí kíp chinh phục các hằng đẳng thức mở rộng
Thứ tư, 14/8/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Thể thơ song thất lục bát trong văn chương Việt Nam
Thứ ba, 28/5/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ ba, 26/11/2024 09:39 AM
Tứ giác nội tiếp là gì? Tính chất của tứ giác nội tiếp
Tứ giác nội tiếp là một trong những khái niệm quan trọng trong hình học lớp 9, đặc biệt khi tìm hiểu về các mối quan hệ giữa các điểm và đường tròn. Hãy cùng gia sư online Học là Giỏi khám phá tứ giác nội tiếp này là gì và chúng có các tính chất như thế nào nhé.
Thứ ba, 26/11/2024 04:35 AM
Khám phá lý thuyết về cung chứa góc toán 9
Khái niệm cung chứa góc ở trong toán lớp 9 đóng vai trò quan trọng khi tìm hiểu các tính chất và bài toán liên quan đến hình tròn. Cùng gia sư online Học là Giỏi đi sâu vào khái niệm và tính chất về cung chứa góc của đường tròn nhé.
Thứ hai, 25/11/2024 09:30 AM
Tìm hiểu góc có đỉnh ở bên trong đường tròn, bên ngoài đường tròn
Góc có đỉnh nằm bên trong đường tròn hoặc bên ngoài đường tròn mang đến những đặc điểm và tính chất riêng. Việc tìm hiểu về các loại góc này hỗ trợ rất nhiều trong việc giải quyết các bài toán hình học phức tạp. Hãy cùng gia sư online Học là Giỏi khám phá những khái niệm và định lý về góc có đỉnh nằm bên trong và bên ngoài đường tròn nhé.
Thứ sáu, 22/11/2024 09:18 AM
Chinh phục kiến thức về góc nội tiếp
Trong hình tròn, góc nội tiếp là một chủ đề cơ bản khi chúng có nhiều tính chất cần lưu ý trong hình học phẳng. Đây là khái niệm giúp chúng ta hiểu thêm các định lý liên quan đến đường tròn. Cùng gia sư online Học là Giỏi tìm hiểu về góc nội tiếp có gì đặc biệt và những nội dung quan trọng trong bài học này nhé.
Thứ ba, 19/11/2024 10:06 AM
Khám phá mối liên hệ giữa cung và dây
Mối liên hệ giữa cung và dây cung của đường tròn là chủ đề quan trọng trong chương trình hình học lớp 9. Dù chúng ta đã quá quen thuộc với hình ảnh những đường tròn, ít ai biết rằng cung và dây cung tạo sự liên kết mật thiết trong hình tròn. Hãy cùng gia sư online Học là Giỏi tìm hiểu rõ mối quan hệ này có gì đặc biệt nhé.
Thứ hai, 18/11/2024 10:07 AM
Tổng hợp kiến thức vị trí tương đối của hai đường tròn
Vị trí tương đối của hai đường tròn là kiến thức quan trọng để xét các tính chất của 2 đường tròn này có mối quan hệ gì với nhau. Hãy cùng gia sư online Học là Giỏi khám phá các trường hợp cơ bản về vị trí tương đối của hai đường tròn này nhé.