Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Thứ hai, 30/9/2024 09:45 AM
Tác giả: Admin Hoclagioi
Phương trình bậc nhất 1 ẩn là một bài toán cơ bản nhất mà chúng ta thường xuyên gặp trong các dạng toán từ dễ đến phức tạp. Dù tên gọi nghe có vẻ bí ẩn nhưng nếu nắm vững nguyên lý cơ bản, bạn sẽ thấy việc giải chúng chẳng khó khăn gì. Hãy cùng gia sư online Học là Giỏi khám phá dạng phương trình bậc nhất trong toán học này nhé.
Mục lục [Ẩn]
Phương trình bậc nhất một ẩn là một trong những dạng phổ biến trong toán học mà có lẽ bạn đã gặp qua rất nhiều lần mà không nhận ra. Đây là loại phương trình dễ hiểu và dễ giải nhất trong toán học.
Phương trình bậc nhất một ẩn là một phương trình mà trong đó chỉ có một biến duy nhất (ẩn), và biến này xuất hiện với bậc (số mũ) là 1. Phương trình này có dạng:
ax + b = 0
Trong đó:
- x là ẩn số ,
- a và b là những hằng số, điều kiện: a≠0
Điều chúng ta cần lưu ý là hệ số của ẩn không thể bằng 0. Nếu a=0, phương trình trở thành 0.x + b = 0, tức là nó không còn phương trình bậc nhất nữa. Vậy điều kiện xác định của phương trình bậc nhất một ẩn chính là hệ số a phải khác 0. Chỉ khi a≠0, chúng ta mới có thể đi tìm giá trị của x và giải phương trình.
Để giải phương trình, chúng ta cần biến đổi nó sao cho dễ dàng hơn, và hai quy tắc cực kỳ hữu ích chính là quy tắc chuyển vế và quy tắc nhân với một số:
Một trong những quy tắc phổ biến nhất khi giải phương trình. Khi bạn chuyển một số hoặc một biểu thức từ vế này sang vế kia của phương trình, điều duy nhất bạn phải nhớ là đổi dấu.
Nói cách khác, nếu một biểu thức đang ở vế trái và bạn muốn chuyển nó sang vế phải, hãy đổi dấu từ dương sang âm, hoặc ngược lại.
Ví dụ, với phương trình:
x+5 = 10
Bạn muốn đưa số 5 từ vế trái sang vế phải. Chỉ cần đổi dấu của nó:
x = 10 − 5
Bây giờ, chỉ cần tính toán: x=5.
Đây là cách chúng ta đơn giản hóa phương trình bằng cách nhân (hoặc chia) cả hai vế của phương trình với cùng một số khác 0. Lý do chúng ta nhân cả hai vế là để giữ cho phương trình vẫn cân bằng.
Ví dụ, với phương trình:
2x=8
Chia cả hai vế cho 2, ta có:
Tính ra được: x = 4 .
Bạn đã từng nghe về phương trình bậc nhất một ẩn và tự hỏi làm thế nào để giải nó một cách nhanh chóng? Hãy cùng nhau tìm hiểu cách giải phương trình này qua các bước sau:
Quy tắc chuyển vế là bước căn bản giúp bạn đưa mọi thứ không liên quan đến ẩn x sang một bên, thường là vế phải. Để làm điều đó, bạn chỉ cần chuyển hằng số từ vế trái sang vế phải và đổi dấu nó.
ax = −b
Bây giờ, x= -ba là kết quả cuối cùng.
Kết luận nghiệm của phương trình: S
Chú ý: Với phương trình ax + b = 0, ta có:
Nếu a = 0 và b = 0, phương trình có vô số nghiệm.
Nếu a = 0 và b ≠ 0, phương trình vô nghiệm.
Nếu a ≠ 0, phương trình có nghiệm duy nhất là .
Sau khi đã hiểu rõ cách giải phương trình bậc nhất, giờ là lúc chúng ta áp dụng những gì đã học vào các bài tập cụ thể. Có hai mức độ chúng ta sẽ xem xét: bài tập cơ bản và bài tập nâng cao:
Bài 1: Giải phương trình sau:
3x+7=16
Hướng dẫn:
Bước 1: Sử dụng quy tắc chuyển vế:
3x=16−7
Bước 2: Tính:
3x=9
Bước 3: Chia cả hai vế cho 3 để tìm x:
=3
Vậy, x=3.
Bài 2: Giải phương trình sau:
5x−4=11
Hướng dẫn:
Bước 1: Sử dụng quy tắc chuyển vế:
5x=11+4
Bước 2: Tính:
5x=15
Bước 3: Chia cả hai vế cho 5:
=3
Vậy, x=3.
Bài 3: Giải phương trình sau:
2(3x−4)=5x+8
Hướng dẫn:
Bước 1: Nhân phân phối:
6x−8=5x+8
Bước 2: Chuyển số:
6x−5x=8+8
Bước 3: Tính:
x=16
Vậy, x=16.
Bài 4: Giải phương trình sau:
4x−3=2x+7
Hướng dẫn:
Bước 1: Chuyển tất cả các biến chứa x về một vế, và các hằng số về vế còn lại:
4x−2x=7+3
Bước 2: Tính toán:
2x=10
Bước 3: Chia cả hai vế cho 2:
=5
Vậy, x=5.
Phương trình bậc nhất một ẩn rất gần gũi trong cuộc sống hàng ngày và đóng góp trong nhiều lĩnh vực. Chúng không chỉ tồn tại trong sách vở mà còn được áp dụng rộng rãi vào nhiều tình huống thực tế.
Khi bạn chia hóa đơn sau một bữa ăn với bạn bè hay tính toán quãng đường cần đi với tốc độ nhất định, đó chính là những ví dụ điển hình của phương trình bậc nhất một ẩn. Nó giúp chúng ta nhanh chóng tìm ra con số cần thiết, giải quyết các vấn đề một cách gọn gàng và rõ ràng.
Trong kinh doanh, phương trình bậc nhất giúp bạn tính toán chi phí, dự toán lợi nhuận hoặc xác định số lượng hàng cần bán để đạt lợi nhuận tối thiểu. Không chỉ trong cuộc sống hằng ngày, phương trình này còn xuất hiện trong các lĩnh vực như kỹ thuật và khoa học, giúp mô hình hóa và giải quyết các bài toán phức tạp.
Vậy là bạn đã nắm được những điều cốt yếu về phương trình bậc nhất một ẩn qua bài học này. Không chỉ dễ hiểu, dạng phương trình này còn giúp bạn nắm bắt và hiểu nhiều vấn đề phức tạp trong toán học hay cuộc sống. Vì vậy, trung tâm gia sư Học là Giỏi hi vọng bạn sẽ có cái nhìn tổng quát về kiến thức đối với phương trình bậc nhất 1 ẩn trong bài này.
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Khóa học liên quan
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đánh giá năng lực miễn phí - Toán lớp 10
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ tư, 2/10/2024 07:05 AM
Tổng hợp kiến thức phương trình chứa ẩn ở mẫu
Phương trình chứa ẩn ở mẫu chính là một trong những bài toán khó nhằn đối với những bạn học sinh lớp 8. Ẩn số trong phương trình không chỉ xuất hiện ở những vị trí quen thuộc mà còn nằm sâu trong các mẫu số, đòi hỏi chúng ta phải biết cách để giải. Cùng gia sư online Học là Giỏi khám phá xem làm sao để giải quyết những phương trình này một cách dễ dàng nhé.
Thứ ba, 1/10/2024 06:40 AM
Chinh phục lý thuyết cơ bản của phương trình tích
Phương trình tích là một phương pháp toán học cực kì hữu dụng giúp chúng ta giải quyết nhiều dạng bài toán khác nhau. Dạng phương trình này cho chúng ta một cách tiếp cận đầy hấp dẫn và hiệu quả trong việc tìm ra lời giải cho các phương trình. Hãy cùng gia sư online Học là Giỏi khám phá sâu hơn về lý thuyết và cách giải dạng phương trình nhé.
Thứ hai, 30/9/2024 07:27 AM
Tổng hợp kiến thức về phân thức đại số
Bạn có thể đã gặp phân thức đại số trong các bài tập, nhưng bạn có biết chúng còn có mặt ở cuộc sống hàng ngày của chúng ta? Từ những công trình kiến trúc đến những công thức tài chính phức tạp, công thức toán học này giúp mọi thứ vận hành trơn tru hơn. Hãy cùng gia sư online Học là Giỏi khám phá hành trình của phân thức từ lớp học đến đời sống thực tế nhé!
Thứ tư, 25/9/2024 09:43 AM
Tìm hiểu cách tính cạnh huyền tam giác vuông cân
Khi nhắc đến hình học, chắc hẳn bạn đã quen thuộc với khái niệm tam giác, nhưng tam giác vuông cân lại là một trường hợp đặc biệt mà bạn không thể bỏ qua. Công thức tính cạnh huyền tam giác vuông cân không chỉ giúp chúng ta dễ dàng tính toán trong hình học mà còn là nền tảng cho nhiều định lý quan trọng đối với các dạng bài tập nâng cao. Vì vậy, Gia sư online Học là Giỏi sẽ cùng bạn khám phá về cách tính cạnh huyền trong tam giác này nhé.
Thứ tư, 25/9/2024 06:32 AM
Công thức và cách chứng minh đạo hàm sin
Đạo hàm sin là một trong những kiến thức cơ bản nhưng cực kỳ quan trọng trong toán học, đặc biệt là lượng giác. Dạng đạo hàm này có nhiều ứng dụng trong nhiều lĩnh vực như vật lý, kỹ thuật, và kinh tế giúp chúng ta hiểu rõ hơn về sự thay đổi và chuyển động trong thế giới xung quanh. Gia sư online Học là Giỏi sẽ chỉ cho bạn về dạng đạo hàm đặc biệt này nhé.
Thứ ba, 24/9/2024 10:38 AM
Khám phá các cách tính cạnh huyền tam giác vuông
Tính cạnh huyền trong tam giác vuông là bước quan trọng trong tính toán hình học. Từ việc đo chiều cao tòa nhà, tính khoảng cách hay thậm chí là thiết kế mô hình 3D, việc tính cạnh huyền giúp giải quyết nhiều vấn đề thực tế. Gia sư online Học là Giỏi sẽ cùng bạn khám phá các cách tính trong tam giác đặc biệt này.