Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Bài tập về đồ thị hàm số $y = ax^2$ khá quan trọng trong chương trình toán lớp 9. Làm thế nào để làm tốt dạng toán này? Hãy cùng Học là Giỏi ôn lại các dạng bài tập về đồ thị hàm số $y = ax^2$ nhé!
Mục lục [Ẩn]
Phương pháp giải
Để vē đồ thị hàm số $y=a x^2$, ta thực hiện các bước sau:
- Bước 1: Lập bảng giá trị (nên lấy ít nhất 5 giá trị).
- Bước 2: Đồ thị hàm bậc số có dạng parabol nằm phía trên trục hoành nếu $a>0$ và nằm phía dưới trục hoành nếu $a<0$, đồng thời đi qua các điểm thuộc bảng giá trị.
- Bước 3: Vẽ đồ thị.
Ví dụ: Vẽ đồ thị hàm số: $y = x^2$
Bài giải
Ta có bảng giá trị:
x | -2 | -1 | 0 | 1 | 2 |
$y=x^2$ | 4 | 1 | 0 | 1 | 4 |
Vẽ đồ thị hàm số:
Chú ý: Hệ phương trình bậc nhất hai ẩn có thể có nghiệm duy nhất hoặc vô nghiệm hoặc vô số nghiệm.
Phương pháp giải
Thay tọa độ của điểm đó vào hàm số và kết luận như sau:
- Nếu được khẳng định đúng thì điểm đó thuộc đồ thị hàm số.
- Nếu không đúng thì điểm đó không thuộc đồ thị hàm số
Ví dụ 1: Cho hàm số $y=f(x)=-\frac{1}{2} x^2$ có đồ thị $(C)$. Trong các điểm $A(2 ;-2), B(1 ; 0)$, $C\left(-1 ;-\frac{1}{2}\right)$, điểm nào thuộc đồ thị $(C)$, điểm nào không thuộc? Vì sao?
Bài giải
Điểm $A$ thuộc đồ thị $(C)$ vì $f\left(x_A\right)=-\frac{1}{2} \cdot(2)^2=-2=y_A$.
Điểm $B$ không thuộc đồ thị $(C)$ vì $f\left(x_B\right)=-\frac{1}{2} \cdot(1)^2=-\frac{1}{2} \neq y_B$.
Điểm $C$ thuộc đồ thị $(C)$ vì $f\left(x_C\right)=-\frac{1}{2} \cdot(-1)^2=-\frac{1}{2}=y_C$.
Ví dụ 2: Tìm điểm thuộc đồ thị hàm số $(C): y=5 x^2$ biết
a) Điểm đó có hoành độ bằng -2.
b) Điểm đó́ có tung độ bằng 5.
Bài giải
a) $x=-2 \Rightarrow y=5 \cdot(-2)^2=20$. Vậy tọa độ điểm là $(-2 ; 5)$.
b) $y=5 \Rightarrow 5 x^2=5 \Leftrightarrow x^2=1 \Leftrightarrow x= \pm 1$.
Vậy có hai điểm thỏa yêu cầu bài toán là $(1 ; 5)$ và $(-1 ; 5)$.
Phương pháp giải
Hàm số $y=f(x)$ có đồ thị là $(P)$. Điểm $M\left(x_0 ; y_0\right) \in(P) \Leftrightarrow y_0=f\left(x_0\right)$.
Ví dụ: Xác định hàm số bậc hai $y=a x^2$. Biết đồ thị đi qua điểm $A(10 ; 30)$.
Bài giải
Điểm $A(10 ; 30)$ thuộc đồ thị hàm số $y=ax^2 \Leftrightarrow 30=a \cdot 10^2 \Leftrightarrow a=\frac{3}{10}$.
Vậy hàm số cần tìm là $y=\frac{3}{10} x^2$.
Phương pháp giải
Để tìm tọa độ giao điểm của $(P)$ và $(d)$, ta tiến hành làm các bước như sau:
- Bước 1: Tìm phương trình hoành độ giao điểm: $a x^2=m x+n$ (4.1)
- Bước 2: Tìm số giao điểm
Nếu (4.1) vô nghiệm thì $(d)$ không cá́t $(P)$.
Nến (4.1) có 2 nghiệm thì phân biệt thì $(d)$ cắt $(P)$ tại 2 điểm phân biệt.
Nếu (4.1) có nghiệm kép nghiệm thì $(d)$ tiếp xúc $(P)$ tại 1 điểm.
- Bước 3: Nếu phương trình (4.1) có nghiệm $x_i$ thì suy ra tung độ giao điểm là $y_i=a x_i^2$ hoặc $y_i=m x_i+n$
- Bước 4: Kết luận.
Ví dụ: Cho parabol $(P): y=x^2$ và đường thẳng $(d): y=-x+2$.
a) Tìm tọa độ giao điểm $A, B\left(x_A>x_B\right)$ của $(d)$ và $(P)$.
b) Tính diện tích tam giác OAB.
Bài giải
a) Phương trình hoành độ giao điểm $(d)$ và $(P)$
$x^2=-x+2 \Leftrightarrow x^2+x-2=0 \Leftrightarrow\left[\begin{array}{l}x=1 \\x=-2 .\end{array}\right.$
Với $x=1 \Rightarrow y=1$.
Với $x=-2 \Rightarrow y=4$.
Vậy $(d)$ cắt $(P)$ tại hai điểm phân biệt có tọa độ $A(1 ; 1)$ và $B(-2 ; 4)$.
b)
Gọi $C, D$ là hình chiếu của $B, A$ xuống $O x$.
Ta có
$\begin{aligned}& S_{B C D A}=\frac{(B C+A D) C D}{2}=\frac{(4+1) \cdot 3}{2}=\frac{15}{2}, \\& S_{B C O}=\frac{B C \cdot C O}{2}=4, \\& S_{A D O}=\frac{A D \cdot D O}{2}=\frac{1}{2} .\end{aligned}$
Suy ra
$S_{A B O}=S_{B C D A}-S_{B C O}-S_{A D O}=3 .$
Vậy diện tích tam giác ABO bằng 3 (đvdt).
Như vậy, Học là Giỏi đã tổng hợp các dạng bài tập về đồ thị hàm số $y=ax^2$, Học là Giỏi mong rằng các bạn làm tốt dạng bài tập này nhé. Chúc các bạn học tốt.
Xem thêm:
Các cách giải hệ phương trình bậc nhất hai ẩn thường gặp
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
STEM là gì? Lợi ích và ứng dụng trong giáo dục hiện đại
Thứ ba, 12/8/2025Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Bảng tuần hoàn nguyên tố hóa học theo chương trình mới
Thứ hai, 15/4/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ năm, 28/8/2025 04:23 AM
Tia là gì? Khái niệm cơ bản và tính chất trong hình học
Trong hình học, một trong những khái niệm mà học sinh cần nắm vững chính là tia. Nhiều bạn thường đặt câu hỏi: tia là gì và cách phân biệt nó với đoạn thẳng hay đường thẳng như thế nào? Học là Giỏi sẽ giúp bạn tìm hiểu chi tiết về tia là gì, các tính chất quan trọng và những bài tập minh họa dễ hiểu qua bài viết dưới đây nhé.
Thứ tư, 27/8/2025 02:03 PM
Đoạn thẳng là gì? Cách tính độ dài đoạn thẳng
Trong chương trình toán học cơ bản, từ những bài toán hình học đầu tiên, học sinh đã được làm quen với đoạn thẳng để nghiên cứu đường thẳng, góc, tam giác hay các hình đa giác phức tạp hơn. Học là Giỏi sẽ giúp bạn hiểu rõ khái niệm, tính chất và các dạng bài tập cũng như nắm bắt được cách tính độ dài đoạn thẳng nhé.
Thứ tư, 27/8/2025 08:20 AM
Đường thẳng và những kiến thức nền tảng cần ghi nhớ
Trong hình học, đường thẳng là một trong những khái niệm cơ bản và xuất hiện nhiều trong các đề thi và bài kiểm tra. Học là Giỏi sẽ giúp bạn hiểu rõ hơn về đặc điểm, ứng dụng và cách giải bài tập liên quan đến đường thẳng thông qua bài viết này nhé.
Thứ tư, 27/8/2025 03:12 AM
Hướng dẫn học bảng nhân 6 hiệu quả tại nhà
Bảng nhân 6 là một phần không thể thiếu trong bảng cửu chương, thường xuất hiện trong nhiều dạng bài tập và tình huống thực tế. Học là Giỏi sẽ giúp bạn hiểu rõ quy luật, ghi nhớ dễ dàng và thực hành hiệu quả bảng nhân 6.
Thứ ba, 26/8/2025 09:12 AM
Tổng hợp công thức tính phương sai và độ lệch chuẩn dễ nhớ
Trong thống kê và xác suất, cách dữ liệu phân tán quanh giá trị trung bình có ý nghĩa trong học tập cũng như thực tiễn. Hai công thức này thường được sử dụng để đo lường mức độ biến động đó chính là phương sai và độ lệch chuẩn. Học là Giỏi sẽ giúp bạn nắm vững kiến thức cơ bản về phương sai và độ lệch chuẩn, kèm theo bài tập minh họa dễ hiểu.
Thứ hai, 25/8/2025 09:45 AM
Tập hợp con là gì? Các trường hợp đặc biệt của tập hợp con
Khái niệm tập hợp hỗ trợ học sinh làm quen với cách mô tả và phân loại đối tượng trong môn toán cấp 3. Trong đó, tập hợp con là gì luôn là câu hỏi thường gặp bởi đây là kiến thức cơ bản nhưng lại có ứng dụng trong nhiều dạng bài tập. Học là Giỏi sẽ giúp bạn nắm vững khái niệm, tính chất và cách vận dụng tập hợp con một cách rõ ràng, dễ hiểu.