Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức

Các dạng bài tập về đồ thị hàm số $y = ax^2$

schedule.svg

Thứ sáu, 10/5/2024 11:16 AM

Tác giả: Admin Hoclagioi

Bài tập về đồ thị hàm số $y = ax^2$ khá quan trọng trong chương trình toán lớp 9. Làm thế nào để làm tốt dạng toán này? Hãy cùng Học là Giỏi ôn lại các dạng bài tập về đồ thị hàm số $y = ax^2$ nhé!

Mục lục [Ẩn]

Dạng 1: Vẽ đồ thị hàm số

Phương pháp giải

Để vē đồ thị hàm số $y=a x^2$, ta thực hiện các bước sau:

- Bước 1: Lập bảng giá trị (nên lấy ít nhất 5 giá trị).

- Bước 2: Đồ thị hàm bậc số có dạng parabol nằm phía trên trục hoành nếu $a>0$ và nằm phía dưới trục hoành nếu $a<0$, đồng thời đi qua các điểm thuộc bảng giá trị.

- Bước 3: Vẽ đồ thị.

Ví dụ: Vẽ đồ thị hàm số: $y = x^2$

Bài giải

Ta có bảng giá trị:


 

x

-2

-1

0

1

2

$y=x^2$

4

1

0

1

4


 

Vẽ đồ thị hàm số:


 

Chú ý: Hệ phương trình bậc nhất hai ẩn có thể có nghiệm duy nhất hoặc vô nghiệm hoặc vô số nghiệm.

Dạng 2: Tìm điểm thuộc đồ thị hàm số

Phương pháp giải

Thay tọa độ của điểm đó vào hàm số và kết luận như sau:

- Nếu được khẳng định đúng thì điểm đó thuộc đồ thị hàm số.

- Nếu không đúng thì điểm đó không thuộc đồ thị hàm số

Ví dụ 1: Cho hàm số $y=f(x)=-\frac{1}{2} x^2$ có đồ thị $(C)$. Trong các điểm $A(2 ;-2), B(1 ; 0)$, $C\left(-1 ;-\frac{1}{2}\right)$, điểm nào thuộc đồ thị $(C)$, điểm nào không thuộc? Vì sao?

Bài giải

Điểm $A$ thuộc đồ thị $(C)$ vì $f\left(x_A\right)=-\frac{1}{2} \cdot(2)^2=-2=y_A$.

Điểm $B$ không thuộc đồ thị $(C)$ vì $f\left(x_B\right)=-\frac{1}{2} \cdot(1)^2=-\frac{1}{2} \neq y_B$.

Điểm $C$ thuộc đồ thị $(C)$ vì $f\left(x_C\right)=-\frac{1}{2} \cdot(-1)^2=-\frac{1}{2}=y_C$.

Ví dụ 2: Tìm điểm thuộc đồ thị hàm số $(C): y=5 x^2$ biết

a) Điểm đó có hoành độ bằng -2.

b) Điểm đó́ có tung độ bằng 5.

Bài giải

a) $x=-2 \Rightarrow y=5 \cdot(-2)^2=20$. Vậy tọa độ điểm là $(-2 ; 5)$.

b) $y=5 \Rightarrow 5 x^2=5 \Leftrightarrow x^2=1 \Leftrightarrow x= \pm 1$. 

Vậy có hai điểm thỏa yêu cầu bài toán là $(1 ; 5)$ và $(-1 ; 5)$.

Dạng 3: Tìm điểm thuộc đồ thị hàm số

Phương pháp giải

Hàm số $y=f(x)$ có đồ thị là $(P)$. Điểm $M\left(x_0 ; y_0\right) \in(P) \Leftrightarrow y_0=f\left(x_0\right)$.

Ví dụ: Xác định hàm số bậc hai $y=a x^2$. Biết đồ thị đi qua điểm $A(10 ; 30)$.

Bài giải

Điểm $A(10 ; 30)$ thuộc đồ thị hàm số $y=ax^2 \Leftrightarrow 30=a \cdot 10^2 \Leftrightarrow a=\frac{3}{10}$. 

Vậy hàm số cần tìm là $y=\frac{3}{10} x^2$.

Dạng 4: Bài toán tương giao

Phương pháp giải

Để tìm tọa độ giao điểm của $(P)$ và $(d)$, ta tiến hành làm các bước như sau:

- Bước 1: Tìm phương trình hoành độ giao điểm: $a x^2=m x+n$ (4.1)

- Bước 2: Tìm số giao điểm

Nếu (4.1) vô nghiệm thì $(d)$ không cá́t $(P)$.

Nến (4.1) có 2 nghiệm thì phân biệt thì $(d)$ cắt $(P)$ tại 2 điểm phân biệt.

Nếu (4.1) có nghiệm kép nghiệm thì $(d)$ tiếp xúc $(P)$ tại 1 điểm.

- Bước 3: Nếu phương trình (4.1) có nghiệm $x_i$ thì suy ra tung độ giao điểm là $y_i=a x_i^2$ hoặc $y_i=m x_i+n$

- Bước 4: Kết luận.

Ví dụ: Cho parabol $(P): y=x^2$ và đường thẳng $(d): y=-x+2$.

a) Tìm tọa độ giao điểm $A, B\left(x_A>x_B\right)$ của $(d)$ và $(P)$.

b) Tính diện tích tam giác OAB.

Bài giải

a) Phương trình hoành độ giao điểm $(d)$ và $(P)$

$x^2=-x+2 \Leftrightarrow x^2+x-2=0 \Leftrightarrow\left[\begin{array}{l}x=1 \\x=-2 .\end{array}\right.$

Với $x=1 \Rightarrow y=1$.

Với $x=-2 \Rightarrow y=4$.

Vậy $(d)$ cắt $(P)$ tại hai điểm phân biệt có tọa độ $A(1 ; 1)$ và $B(-2 ; 4)$.

b)

Gọi $C, D$ là hình chiếu của $B, A$ xuống $O x$.

Ta có

$\begin{aligned}& S_{B C D A}=\frac{(B C+A D) C D}{2}=\frac{(4+1) \cdot 3}{2}=\frac{15}{2}, \\& S_{B C O}=\frac{B C \cdot C O}{2}=4, \\& S_{A D O}=\frac{A D \cdot D O}{2}=\frac{1}{2} .\end{aligned}$

Suy ra

$S_{A B O}=S_{B C D A}-S_{B C O}-S_{A D O}=3 .$

Vậy diện tích tam giác ABO bằng 3 (đvdt).

 

Như vậy, Học là Giỏi đã tổng hợp các dạng bài tập về đồ thị hàm số $y=ax^2$, Học là Giỏi mong rằng các bạn làm tốt dạng bài tập này nhé. Chúc các bạn học tốt.

 

Xem thêm:
Các cách giải hệ phương trình bậc nhất hai ẩn thường gặp

Cách giải phương trình bậc hai một ẩn và ứng dụng của nó

Chủ đề:

Đăng ký học thử ngay hôm nay

Để con học sớm - Ôn sâu và nhận ưu đãi học phí!

Bài viết liên quan

Bí quyết ghi nhớ bảng nhân 4 qua các bài tập thú vị
schedule

Thứ ba, 11/3/2025 07:55 AM

Bí quyết ghi nhớ bảng nhân 4 qua các bài tập thú vị

Bảng nhân 4 là một trong những kiến thức quan trọng trong toán học tiểu học, giúp học sinh rèn luyện tư duy và kỹ năng tính nhẩm nhanh. Gia sư online Học là Giỏi sẽ giúp bạn nắm vững bảng nhân 4 trong bài viết để bạn áp dụng phép nhân đối với các bài tập một cách hiệu quả.

Học thuộc bảng nhân 3 chỉ trong vài phút
schedule

Thứ ba, 11/3/2025 06:54 AM

Học thuộc bảng nhân 3 chỉ trong vài phút

Bảng nhân 3 là một trong những bảng cửu chương quan trọng giúp chúng ta ghi nhớ phép nhân với số 3 dễ dàng. Trong bài viết dưới đây, gia sư online Học là Giỏi sẽ hướng dẫn chi tiết về bảng nhân 3 để bạn áp dụng phép nhân này hiệu quả nhé.

Bảng nhân 2 là gì? Các phép tính trong bảng nhân 2
schedule

Thứ hai, 10/3/2025 09:32 AM

Bảng nhân 2 là gì? Các phép tính trong bảng nhân 2

Bảng nhân 2 giúp bạn tính nhanh và giải toán dễ dàng hơn cho phép nhân với số 2. Trong bài viết dưới đây, gia sư online Học là Giỏi sẽ cung cấp chi tiết về bảng nhân 2 để bạn có thể nắm vững phép nhân này nhé.

Cách học bảng cửu chương nhân, chia nhanh chóng và hiệu quả
schedule

Thứ sáu, 7/3/2025 10:10 AM

Cách học bảng cửu chương nhân, chia nhanh chóng và hiệu quả

Bảng cửu chương là một công cụ tính toán giúp bạn giải quyết nhanh gọn mọi bài toán trong học tập và cuộc sống. Thành thạo bảng cửu chương hỗ trợ bạn tư duy logic, tính toán linh hoạt và áp dụng vào thực tế dễ dàng hơn. Gia sư online Học là Giỏi mang đến cho bạn bảng cửu chương chi tiết dưới đây để giúp việc ghi nhớ hay học thuộc trở nên dễ dàng và hiệu quả hơn.

Tổng hợp các dạng toán Vi-ét thi vào lớp 10 mới nhất
schedule

Thứ tư, 12/2/2025 06:38 AM

Tổng hợp các dạng toán Vi-ét thi vào lớp 10 mới nhất

Hệ thức Vi-ét là một công cụ quan trọng giúp giải nhanh các bài toán về nghiệm của phương trình bậc hai. Việc nắm vững các dạng toán Vi-ét thi vào lớp 10 sẽ giúp học sinh nâng cao tư duy toán học để dễ dàng giải đề thi. Hôm nay cùng gia sư online Học là Giỏi sẽ hệ thống lại các phương pháp, đưa ra ví dụ cụ thể để giúp bạn làm chủ dạng toán này một cách hiệu quả.

Tứ giác nội tiếp là gì? Tính chất của tứ giác nội tiếp
schedule

Thứ ba, 26/11/2024 09:39 AM

Tứ giác nội tiếp là gì? Tính chất của tứ giác nội tiếp

Tứ giác nội tiếp là một trong những khái niệm quan trọng trong hình học lớp 9, đặc biệt khi tìm hiểu về các mối quan hệ giữa các điểm và đường tròn. Hãy cùng gia sư online Học là Giỏi khám phá tứ giác nội tiếp này là gì và chúng có các tính chất như thế nào nhé.

message.svg zalo.png