Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Bài tập về đồ thị hàm số $y = ax^2$ khá quan trọng trong chương trình toán lớp 9. Làm thế nào để làm tốt dạng toán này? Hãy cùng Học là Giỏi ôn lại các dạng bài tập về đồ thị hàm số $y = ax^2$ nhé!
Mục lục [Ẩn]
Phương pháp giải
Để vē đồ thị hàm số $y=a x^2$, ta thực hiện các bước sau:
- Bước 1: Lập bảng giá trị (nên lấy ít nhất 5 giá trị).
- Bước 2: Đồ thị hàm bậc số có dạng parabol nằm phía trên trục hoành nếu $a>0$ và nằm phía dưới trục hoành nếu $a<0$, đồng thời đi qua các điểm thuộc bảng giá trị.
- Bước 3: Vẽ đồ thị.
Ví dụ: Vẽ đồ thị hàm số: $y = x^2$
Bài giải
Ta có bảng giá trị:
 
x  | -2  | -1  | 0  | 1  | 2  | 
$y=x^2$  | 4  | 1  | 0  | 1  | 4  | 
 
Vẽ đồ thị hàm số:
 
Chú ý: Hệ phương trình bậc nhất hai ẩn có thể có nghiệm duy nhất hoặc vô nghiệm hoặc vô số nghiệm.
Phương pháp giải
Thay tọa độ của điểm đó vào hàm số và kết luận như sau:
- Nếu được khẳng định đúng thì điểm đó thuộc đồ thị hàm số.
- Nếu không đúng thì điểm đó không thuộc đồ thị hàm số
Ví dụ 1: Cho hàm số $y=f(x)=-\frac{1}{2} x^2$ có đồ thị $(C)$. Trong các điểm $A(2 ;-2), B(1 ; 0)$, $C\left(-1 ;-\frac{1}{2}\right)$, điểm nào thuộc đồ thị $(C)$, điểm nào không thuộc? Vì sao?
Bài giải
Điểm $A$ thuộc đồ thị $(C)$ vì $f\left(x_A\right)=-\frac{1}{2} \cdot(2)^2=-2=y_A$.
Điểm $B$ không thuộc đồ thị $(C)$ vì $f\left(x_B\right)=-\frac{1}{2} \cdot(1)^2=-\frac{1}{2} \neq y_B$.
Điểm $C$ thuộc đồ thị $(C)$ vì $f\left(x_C\right)=-\frac{1}{2} \cdot(-1)^2=-\frac{1}{2}=y_C$.
Ví dụ 2: Tìm điểm thuộc đồ thị hàm số $(C): y=5 x^2$ biết
a) Điểm đó có hoành độ bằng -2.
b) Điểm đó́ có tung độ bằng 5.
Bài giải
a) $x=-2 \Rightarrow y=5 \cdot(-2)^2=20$. Vậy tọa độ điểm là $(-2 ; 5)$.
b) $y=5 \Rightarrow 5 x^2=5 \Leftrightarrow x^2=1 \Leftrightarrow x= \pm 1$.
Vậy có hai điểm thỏa yêu cầu bài toán là $(1 ; 5)$ và $(-1 ; 5)$.
Phương pháp giải
Hàm số $y=f(x)$ có đồ thị là $(P)$. Điểm $M\left(x_0 ; y_0\right) \in(P) \Leftrightarrow y_0=f\left(x_0\right)$.
Ví dụ: Xác định hàm số bậc hai $y=a x^2$. Biết đồ thị đi qua điểm $A(10 ; 30)$.
Bài giải
Điểm $A(10 ; 30)$ thuộc đồ thị hàm số $y=ax^2 \Leftrightarrow 30=a \cdot 10^2 \Leftrightarrow a=\frac{3}{10}$.
Vậy hàm số cần tìm là $y=\frac{3}{10} x^2$.
Phương pháp giải
Để tìm tọa độ giao điểm của $(P)$ và $(d)$, ta tiến hành làm các bước như sau:
- Bước 1: Tìm phương trình hoành độ giao điểm: $a x^2=m x+n$ (4.1)
- Bước 2: Tìm số giao điểm
Nếu (4.1) vô nghiệm thì $(d)$ không cá́t $(P)$.
Nến (4.1) có 2 nghiệm thì phân biệt thì $(d)$ cắt $(P)$ tại 2 điểm phân biệt.
Nếu (4.1) có nghiệm kép nghiệm thì $(d)$ tiếp xúc $(P)$ tại 1 điểm.
- Bước 3: Nếu phương trình (4.1) có nghiệm $x_i$ thì suy ra tung độ giao điểm là $y_i=a x_i^2$ hoặc $y_i=m x_i+n$
- Bước 4: Kết luận.
Ví dụ: Cho parabol $(P): y=x^2$ và đường thẳng $(d): y=-x+2$.
a) Tìm tọa độ giao điểm $A, B\left(x_A>x_B\right)$ của $(d)$ và $(P)$.
b) Tính diện tích tam giác OAB.
Bài giải
a) Phương trình hoành độ giao điểm $(d)$ và $(P)$
$x^2=-x+2 \Leftrightarrow x^2+x-2=0 \Leftrightarrow\left[\begin{array}{l}x=1 \\x=-2 .\end{array}\right.$
Với $x=1 \Rightarrow y=1$.
Với $x=-2 \Rightarrow y=4$.
Vậy $(d)$ cắt $(P)$ tại hai điểm phân biệt có tọa độ $A(1 ; 1)$ và $B(-2 ; 4)$.
b)
Gọi $C, D$ là hình chiếu của $B, A$ xuống $O x$.
Ta có
$\begin{aligned}& S_{B C D A}=\frac{(B C+A D) C D}{2}=\frac{(4+1) \cdot 3}{2}=\frac{15}{2}, \\& S_{B C O}=\frac{B C \cdot C O}{2}=4, \\& S_{A D O}=\frac{A D \cdot D O}{2}=\frac{1}{2} .\end{aligned}$
Suy ra
$S_{A B O}=S_{B C D A}-S_{B C O}-S_{A D O}=3 .$
Vậy diện tích tam giác ABO bằng 3 (đvdt).
Như vậy, Học là Giỏi đã tổng hợp các dạng bài tập về đồ thị hàm số $y=ax^2$, Học là Giỏi mong rằng các bạn làm tốt dạng bài tập này nhé. Chúc các bạn học tốt.
Xem thêm:
Các cách giải hệ phương trình bậc nhất hai ẩn thường gặp
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
 STEM là gì? Lợi ích và ứng dụng trong giáo dục hiện đại
Thứ ba, 12/8/2025
 Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024
 Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024
 Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024
 Bảng tuần hoàn nguyên tố hóa học theo chương trình mới
Thứ hai, 15/4/2024Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
 Thứ năm, 23/10/2025 09:44 AM
Đáp án, đề thi giữa kì 1 toán 9 Kết nối tri thức 2025-2026
Trong quá trình ôn tập và chuẩn bị cho kỳ thi, việc tham khảo Đề thi giữa kì 1 Toán 9 Kết nối tri thức là vô cùng cần thiết giúp học sinh rèn luyện kỹ năng làm bài. Bộ đề thi được Học là Giỏi tổng hợp và biên soạn bám sát chương trình mới, giúp các em làm quen với cấu trúc đề, dạng câu hỏi thường gặp và cách phân bổ thời gian hợp lý trong phòng thi.
 Thứ ba, 21/10/2025 08:25 AM
Một số bài toán về đại lượng tỉ lệ thuận kèm lời giải
Trong chương trình Toán 7, đại lượng tỉ lệ thuận là một nội dung quan trọng giúp học sinh hiểu rõ mối quan hệ giữa hai yếu tố thay đổi cùng chiều. Học sinh cần nắm được một số bài toán về đại lượng tỉ lệ thuận để giải được đa dạng các dạng bài thường xuất hiện trong các đề thi, đề kiểm tra. Hãy cùng Học là Giỏi tìm hiểu một số bài toán về đại lượng tỉ lệ thuận qua bài viết dưới đây!
 Thứ ba, 14/10/2025 07:19 AM
Tổng hợp kiến thức Toán lớp 5 đầy đủ nhất
Chương trình Toán lớp 5 là bước chuyển quan trọng tạo nền tảng cho môn Toán ở bậc THCS. Trong chương trình Toán 5, học sinh được làm quen với nhiều dạng kiến thức mới như phân số, số thập phân, tỉ số, tỉ lệ, các bài toán thực tế và hình khối. Học là Giỏi đã tổng hợp các kiến thức trọng tâm của chương trình Toán lớp 5 dưới dạng trực quan, giúp học sinh dễ theo dõi và ôn tập. Hãy cùng ôn tập về phần kiến thức này qua bài tổng hợp kiến thức Toán lớp 5 dưới đây.
 Thứ ba, 14/10/2025 03:10 AM
Tổng hợp kiến thức Toán 3 quan trọng
Toán lớp 3 là môn học cung cấp nền tảng từ những kiến thức cơ bản nhất, giúp học sinh rèn luyện tư duy và khả năng tính toán. Để học tốt, các con cần ghi nhớ và hiểu rõ những công thức từ bảng nhân chia, quy tắc tính toán, lý thuyết cơ bản về hình học và giải được các bài toán có lời văn. Bộ tổng hợp kiến thức Toán 3 quan trọng dưới đây có tổng hợp đầy đủ các công thức và nội dung cần nhớ với các quy tắc và ví dụ minh họa dễ hiểu, giúp học sinh dễ dàng hệ thống kiến thức và nắm được các nội dung cốt lõi.
 Thứ hai, 13/10/2025 10:28 AM
Tổng hợp kiến thức Toán lớp 4 dễ hiểu nhất
Toán lớp 4 là cơ sở kiến thức quan trọng giúp học sinh củng cố nền tảng tư duy và các kỹ năng tính toán, bổ trợ cho việc học các kiến thức Toán học phức tạp hơn. Tuy nhiên, với nhiều kiến thức và dạng bài khác nhau, các em có thể gặp khó khăn trong việc ghi nhớ các công thức. Hiểu được điều đó, Học là Giỏi đã tổng hợp toàn bộ kiến thức trọng tâm Toán lớp 4 qua những bảng tóm tắt ngắn gọn, giúp học sinh có thể học nhanh, nhớ lâu và áp dụng hiệu quả các công thức Toán 4 vào giải bài tập. Hãy cùng tìm hiểu tất cả kiến thức Toán 4 qua bài viết dưới đây!
 Thứ năm, 28/8/2025 04:23 AM
Tia là gì? Khái niệm cơ bản và tính chất trong hình học
Trong hình học, một trong những khái niệm mà học sinh cần nắm vững chính là tia. Nhiều bạn thường đặt câu hỏi: tia là gì và cách phân biệt nó với đoạn thẳng hay đường thẳng như thế nào? Học là Giỏi sẽ giúp bạn tìm hiểu chi tiết về tia là gì, các tính chất quan trọng và những bài tập minh họa dễ hiểu qua bài viết dưới đây nhé.