Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức

Các cách giải hệ phương trình bậc nhất hai ẩn thường gặp

schedule.svg

Thứ sáu, 10/5/2024 11:12 AM

Tác giả: Admin Hoclagioi

Hệ phương trình bậc nhất hai ẩn là kiến thức quan trọng được đề cập trong chương trình toán lớp 9. Có những cách giải hệ phương trình bậc nhất hai ẩn nào? Để trả lời cho câu hỏi này, Học là Giỏi sẽ hệ thống lại cách giải hệ phương trình bậc nhất hai ẩn thường gặp, các em cùng theo dõi nhé!

Mục lục [Ẩn]

Cách giải hệ phương trình số 1: Sử dụng phương pháp thế

Phương pháp giải

Ta có thể giải hệ phương trình bậc nhất hai ẩn bằng phương pháp thế theo các bước sau:

- Bước 1. (Thế) Từ một phương trình của hệ đã cho, ta biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình còn lại của hệ để được phương trình một ẩn.

- Bước 2. (Giải phương trình một ẩn) Giải phương trình (một ẩn) nhận được ở Bước 1 để tìm giá trị của ẩn đó.

- Bước 3. (Tìm ẩn còn lại và kết luận) Thế giá trị vừa tìm được của ẩn đó ở Bước 2 vào biểu thức biểu diễn một ẩn theo ẩn kia ở Bước 1 để tìm giá trị của ẩn còn lại. Từ đó, ta tìm được nghiệm của hệ phương trình đã cho.

Ví dụ: Giải hệ phương trình:

$\left\{\begin{array}{l}2 x+y= 1 & (1) \\7x-2 y=9 &(2) \end{array}\right.$

Bài giải

Từ phương trình (1), ta có: $y=1-2 x$  (3)

Thay vào phương trình (2), ta được: $\quad 7 x-2(1-2x)=9$  (4)

Giải phương trình (4):

$\begin{aligned}7x-2(1-2x) & = 9 \\7x-2+4 x & =9 \\11 x & =11 \\x & =1 .\end{aligned}$

Thay giá trị $x=1$ vào phương trình (3), ta có:

$y=1-2 \cdot 1=-1$.

Vậy hệ phương trình có nghiệm $(x; y)=(1; -1)$.


 

Chú ý: Hệ phương trình bậc nhất hai ẩn có thể có nghiệm duy nhất hoặc vô nghiệm hoặc vô số nghiệm.

Cách giải hệ phương trình số 2: Sử dụng phương pháp cộng đại số

Phương pháp giải

Ta có thể giải hệ phương trình bậc nhất hai ẩn bằng phương pháp cộng đại số theo các bước sau:

- Bước 1. (Làm cho hai hệ số của một ẩn nào đó bằng nhau hoặc đối nhau) Nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của một ẩn nào đó trong hai phương trình của hệ bằng nhau hoặc đối nhau.

- Bước 2. (Đưa về phương trình một ẩn) Cộng (hay trừ) từng vế hai phương trình của hệ phương trình nhận được ở Bước 1 để nhận được một phương trình mà hệ số của một trong hai ẩn bằng 0, tức là nhận được phương trình một ẩn. Giải phương trình một ẩn đó.

- Bước 3. (Tìm ẩn còn lại và kết luận) Thế giá trị vừa tìm được ở Bước 2 vào một trong hai phương trình của hệ đã cho để tìm giá trị của ẩn còn lại. Từ đó, ta tìm được nghiệm của hệ phương trình đã cho.

Ví dụ: Giải hệ phương trình: $\left\{\begin{array}{cc}5 x+2 y=20 & (1) \\ -2 x+3 y=11 & \text { (2) }\end{array}\right.$

Bài giải

Nhân hai vế của phương trình (1) với 2 và nhân hai vế của phương trình (2) với 5 , ta được hệ phương trình sau: $\left\{\begin{array}{cc}10 x+4 y=40 & (3) \\ -10 x+15y=55 & \text { (4) }\end{array}\right.$

Cộng từng vế hai phương trình (3) và (4), ta nhận được phương trình: $19 y=95$ (5)

Giải phương trình (5), ta có: $\quad 19 y=59$, do đó $y=5.$

Thế giá trị $y=5$ vào phương trình (1), ta được phương trình: $10 x+4 .5=40 \quad$ (6)

Giải phương trình (6): $10 x + 20 = 40$

                                    $10 x  =20 $

                                    $x =2$

Vậy hệ phương trình đã cho có nghiệm $(x ; y)=(2 ;5)$.

Cách giải hệ phương trình số 3: Sử dụng phương pháp đặt ẩn phụ

Phương pháp giải

- Bước 1: Đặt điều kiện xác định (nếu có).

- Bước 2: Đặt ẩn phụ.

- Bước 3: Giải hệ phương trình theo ẩn phụ.

- Bước 4: Giải tìm ẩn theo phương trình ẩn phụ.

Ví dụ: Giải hệ phương trình: $\left\{\begin{array}{l}\frac{5 x}{x-1}-\frac{2}{y+4}=3 \\ \frac{-2 x}{1-x}-\frac{6}{y+4}=-2\end{array}\right.$

Bài giải

Điều kiện: $x \neq 1 ; y \neq-4$

Đặt: $\left\{\begin{array}{l}u=\frac{x}{x-1} \\ v=\frac{1}{y+4}\end{array}\right.$

+ Hệ phương trình trở thành: $\left\{\begin{array}{l}5 u-2 v=3 \\ -2 u-6 v=-2\end{array}\right.$

Giải hệ bằng phương pháp thế hoặc phương pháp cộng đại số ta tìm được: $\left\{\begin{array}{l}u=\frac{11}{17} \\ v=\frac{2}{17}\end{array}\right.$

+ Ta có: $\left\{\begin{array}{l}\frac{x}{x-1}=\frac{11}{17} \\ \frac{1}{y+4}=\frac{2}{17}\end{array}$

+ Giải từng phương trình ta tìm được  $x=-\frac{11}{6}$ và $y=\frac{9}{2}$ (Thỏa mãn điều kiện)

Vậy hệ phương trình đã cho có nghiệm duy nhất $(x, y)=\left(-\frac{11}{6} ; \frac{9}{2}\right)$

Bài tập giải hệ phương trình

 

Như vậy, Học là Giỏi đã tổng hợp các cách giải hệ phương trình bậc nhất hai ẩn, Học là Giỏi mong rằng các bạn sẽ dễ dàng làm tốt được các dạng bài tập này nhé! Chúc các bạn học tốt.

 

Xem thêm:

Làm thế nào để giải hệ phương trình bậc nhất hai ẩn?

 

Chủ đề:

Đăng ký học thử ngay hôm nay

Để con học sớm - Ôn sâu và nhận ưu đãi học phí!

Bài viết liên quan

Tia là gì? Khái niệm cơ bản và tính chất trong hình học
schedule

Thứ năm, 28/8/2025 04:23 AM

Tia là gì? Khái niệm cơ bản và tính chất trong hình học

Trong hình học, một trong những khái niệm mà học sinh cần nắm vững chính là tia. Nhiều bạn thường đặt câu hỏi: tia là gì và cách phân biệt nó với đoạn thẳng hay đường thẳng như thế nào? Học là Giỏi sẽ giúp bạn tìm hiểu chi tiết về tia là gì, các tính chất quan trọng và những bài tập minh họa dễ hiểu qua bài viết dưới đây nhé.

Đoạn thẳng là gì? Cách tính độ dài đoạn thẳng
schedule

Thứ tư, 27/8/2025 02:03 PM

Đoạn thẳng là gì? Cách tính độ dài đoạn thẳng

Trong chương trình toán học cơ bản, từ những bài toán hình học đầu tiên, học sinh đã được làm quen với đoạn thẳng để nghiên cứu đường thẳng, góc, tam giác hay các hình đa giác phức tạp hơn. Học là Giỏi sẽ giúp bạn hiểu rõ khái niệm, tính chất và các dạng bài tập cũng như nắm bắt được cách tính độ dài đoạn thẳng nhé.

Đường thẳng và những kiến thức nền tảng cần ghi nhớ
schedule

Thứ tư, 27/8/2025 08:20 AM

Đường thẳng và những kiến thức nền tảng cần ghi nhớ

Trong hình học, đường thẳng là một trong những khái niệm cơ bản và xuất hiện nhiều trong các đề thi và bài kiểm tra. Học là Giỏi sẽ giúp bạn hiểu rõ hơn về đặc điểm, ứng dụng và cách giải bài tập liên quan đến đường thẳng thông qua bài viết này nhé.

Hướng dẫn học bảng nhân 6 hiệu quả tại nhà
schedule

Thứ tư, 27/8/2025 03:12 AM

Hướng dẫn học bảng nhân 6 hiệu quả tại nhà

Bảng nhân 6 là một phần không thể thiếu trong bảng cửu chương, thường xuất hiện trong nhiều dạng bài tập và tình huống thực tế. Học là Giỏi sẽ giúp bạn hiểu rõ quy luật, ghi nhớ dễ dàng và thực hành hiệu quả bảng nhân 6.

Tổng hợp công thức tính phương sai và độ lệch chuẩn dễ nhớ
schedule

Thứ ba, 26/8/2025 09:12 AM

Tổng hợp công thức tính phương sai và độ lệch chuẩn dễ nhớ

Trong thống kê và xác suất, cách dữ liệu phân tán quanh giá trị trung bình có ý nghĩa trong học tập cũng như thực tiễn. Hai công thức này thường được sử dụng để đo lường mức độ biến động đó chính là phương sai và độ lệch chuẩn. Học là Giỏi sẽ giúp bạn nắm vững kiến thức cơ bản về phương sai và độ lệch chuẩn, kèm theo bài tập minh họa dễ hiểu.

Tập hợp con là gì? Các trường hợp đặc biệt của tập hợp con
schedule

Thứ hai, 25/8/2025 09:45 AM

Tập hợp con là gì? Các trường hợp đặc biệt của tập hợp con

Khái niệm tập hợp hỗ trợ học sinh làm quen với cách mô tả và phân loại đối tượng trong môn toán cấp 3. Trong đó, tập hợp con là gì luôn là câu hỏi thường gặp bởi đây là kiến thức cơ bản nhưng lại có ứng dụng trong nhiều dạng bài tập. Học là Giỏi sẽ giúp bạn nắm vững khái niệm, tính chất và cách vận dụng tập hợp con một cách rõ ràng, dễ hiểu.

message.svg zalo.png