Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức

Tổng hợp kiến thức về định lý viet trong Toán lớp 9

schedule.svg

Thứ tư, 22/5/2024 02:24 AM

Tác giả: Admin Hoclagioi

Định lý Viet học ở chương trình đại số ở cấp 2 và cấp 3 có nội dung kiến thức quan trọng đối với học sinh. Sau đây là những thông tin về định lý viet và những điều cần biết mà Học là Giỏi đã tổng hợp được.

Mục lục [Ẩn]

Định lý Viet ( Hệ thức Viet)

Định lý Viet ( Hệ thức Viet)

Định lý Viet là công thức thể hiện mối quan hệ giữa các nghiệm của phương trình đa thức trong trường số phức và các hệ số do nhà toán học Pháp François Viète tìm ra. Viète được phiên âm theo tiếng Việt là Vi-ét.

Định lý Viet thuận

Định lý Viet: Nếu phương trình bậc hai $a x^2+b x+c=0(a \neq 0)$ có hai nghiệm 

$\mathrm{x}_1, \mathrm{x}_2$ (phân biệt hoặc trùng nhau) thì tổng các nghiệm $S=-\frac{b}{a}$ và tích các nghiệm $P=\frac{c}{a}$.

Định lý Viet đảo

Nếu có 2 số $x_1, x_2$ thoả mãn $\left\{\begin{array}{l}x_1+x_2=S \\ x_1, x_2=P\end{array}\right.$ thì chúng là nghiệm số của phương trình: $\mathrm{t}^2-\mathrm{st}+\mathrm{p}=0$

(Điều kiện $\exists 2$ số $x_1, x_2$ là $S^2-4 \mathrm{P} \geq 0$ )

Chú ý: Trước khi áp dụng hệ thức Viet cần tìm điều kiện để phương trình có 2 nghiệm

Các dạng bài tập hệ thức Viet

Các dạng bài tập hệ thức Viet

Dạng 1. Tìm tham số m để phương trình có nghiệm thỏa mãn điều kiện cho trước

Bước 1: Tìm điều kiện để phương trình có nghiệm.

Bước 2: Tính tổng S và tích P của hai nghiệm theo định lý Viet.

Bước 3: Sử dụng hệ thức Viet, kết hợp biến đổi đẳng thức, bất đẳng thức để tìm tham số.

Bước 4: Đối chiếu điều kiện và kết luận.

Dạng 2: Tìm tham số và tìm nghiệm còn lại khi biết trước một nghiệm $x_0$ của phương trình

Bước 1: Thay giá trị $x_0$ vào phương trình để tìm tham số.

Bước 2: Thay giá trị của tham số hệ thức Vi-ét để tìm nghiệm còn lại.

Bước 3: Kết luận.

Dạng 3: Khi phương trình bậc hai có nghiệm, tìm hệ thức liên hệ giữa các nghiệm không phụ thuộc vào tham số

Bước 1: Tìm điều kiện để phương trình có nghiệm.

Bước 2: Tính tổng S và tích P của hai nghiệm theo định lý Viet.

Bước 3: Tính m theo S và P.

Bước 4: Khử m và tìm ra hệ thức.

Bước 5: Kết luận.

Dạng 4. Áp dụng hệ thức Vi-ét để tính nhẩm nghiệm của phương trình bậc hai

Cho phương trình bậc hai $a x^2+b x+c=0(a \neq 0)$.

+) Nếu $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ thì phương trình có nghiệm $\mathrm{x}_1=1$ và $\mathrm{x}_2=\frac{c}{a}$.

+) Nếu $\mathrm{a}-\mathrm{b}+\mathrm{c}=0$ thì phương trình có nghiệm $\mathrm{x}_1=-1$ và $\mathrm{x}_2=-\frac{c}{a}$.

Dạng 5. Tìm hai số khi biết tổng và tích

Nếu hai số $u$ và $v$ có tổng $u+v=S$ và tích $u \cdot v=P$ thì hai số đó là nghiệm của phương trình $x^2-S x+P=0$.

Điều kiện để có u và v là $\mathrm{S}^2-4 \mathrm{P} \geq 0$.

Bài tập hệ thức Vi-ét 

Để nắm rõ kiến thức cơ bản trên thì phải luyện tập thường xuyên với các dạng bài tập. Dưới đây là các dạng cơ bản và nâng cao mà bạn có thể tham khảo.

Bài tập cơ bản

Bài 1: Cho phương trình x2 + 5x  6 = 0 có hai nghiệm phân biệt x1 , x2 . Không giải phương trình, tính giá trị của biểu thức x12 + x22 .

Lời giải 

Xét phương trình x2 + 5x  6 có a = 1, b = 5, c = -6 

Có a.c < 0 nên phương trình luôn có hai nghiệm phân biệt. 

Do phương trình có hai nghiệm phân biệt x1 , x2 nên ta áp dụng hệ thức Vi-ét, có: 

x1+x2=b/a=5/1=5x1.x2=c/a=6/1=6

Mặt khác, ta có: 

x12 + x22    = x12 + 2 x1 x2 + x22   2 x1 x2   = ( x12 + 2 x1 x2 + x22  )  2 x1 x2 = ( x1 + x2 )2   2 x1 x2    = (  5 )2  2. (  6 )    = 37

Bài 2: Cho phương trình x2 + 7 x  4 = 0 có hai nghiệm phân biệt x1 , x2 . Không giải phương trình, tính giá trị của biểu thức 1x1+1x2.

Lời giải

Xét phương trình x2+7x4=0 có a = 1, b = 7, c = -4

Do a.c < 0 nên phương trình luôn có hai nghiệm phân biệt.

Do phương trình có hai nghiệm phân biệt x1,x2 nên ta áp dụng hệ thức Vi-ét, có:

x1+x2=ba=71=7x1.x2=ca=41=4

Mặt khác, ta có:

1x1+1x2

=x2x1x2+x1x1x2

=x2+x1x1x2

=74=74

Bài tập nâng cao

Bài 3: Cho phương trình x2+5mx4=0. Tìm m để x1,x2 là nghiệm của phương trình và thỏa mãn: x12+x22+6x1x2=9.

Lời giải

Xét phương trình x2+5mx4=0 (*)

Để phương trình (*) có nghiệm khi và chỉ khi:

Δ=(5m)24.1.(4)=25m2+16>0

Mà m20 với mọi m nên Δ=25m2+16>0 với mọi m.

Do đó, phương trình (*) có nghiệm với mọi m. Gọi hai nghiệm của phương trình là x1,x2

Áp dụng hệ thức Vi-ét ta có: x1+x2=5m1=5mx1.x2=41=4

Mặt khác, ta có:

x12+x22+6x1x2=9

x12+2x1x2+x22+4x1x2=9

x1+x22+4x1x2=9

5m2+4.(4)=9

25m216=9

25m2=25

m2=1

m=±1

Vậy m = 1 hoặc m = -1 thì phương trình có hai nghiệm x1,x2 thỏa mãn: x12+x22+6x1x2=9.

Bài 4: Cho phương trình x22(m1)x3m=0 (m là tham số). Tìm m để phương trình có hai nghiệm x1,x2 thỏa mãn x12+x2210

Lời giải

Xét phương trình x22(m1)x3m=0 (*)

Ta có:

Δ=2(m1)24.1.(3m)=4(m22m+1)+12+4m

=4m28m+4+12+4m=4m24m+16

==4m24m+1+15=(2m1)2+15

Ta có: (2m1)20 với mọi m

Δ=(2m1)2+15>0 với mọi m

Do đó, phương trình (*) luôn có hai nghiệm phân biệt với mọi m . Gọi hai nghiệm của phương trình là x1,x2

Áp dụng hệ thức Vi-ét ta có:

x1+x2=2(m1)1=2m2x1.x2=3m1=3m

Mặt khác, ta có:

x12+x2210

x12+2x1x2+x222x1x210

x1+x222x1x210

2m222(3m)10

4m28m+4+6+2m10

4m26m0

2m(2m3)0

m02m30m02m30m0m32m0m32m32m0

Vậy khi m32 hoặc m0 thì phương trình có hai nghiệm x1,x2 thỏa mãn x12+x2210

Xem thêm:

Tổng hợp lí thuyết về bất đẳng thức Cosi

Định lý cosin

Kết luận

Trên đây là tổng hợp lí thuyết về định lí Viet trong chương trình Toán lớp 9. Học là Giỏi mong rằng, nó sẽ gợi ý cho các bạn cách hệ thống kiến thức sáng tạo và đẹp theo cách của riêng mình, biến các công thức khô khan trở nên sinh động hơn, từ đó giúp chúng mình nhớ và áp dụng để giải được các bài toán liên quan. 

Chủ đề:

Đăng ký học thử ngay hôm nay

Để con học sớm - Ôn sâu và nhận ưu đãi học phí!

Bài viết liên quan

Bí quyết ghi nhớ bảng nhân 4 qua các bài tập thú vị
schedule

Thứ ba, 11/3/2025 07:55 AM

Bí quyết ghi nhớ bảng nhân 4 qua các bài tập thú vị

Bảng nhân 4 là một trong những kiến thức quan trọng trong toán học tiểu học, giúp học sinh rèn luyện tư duy và kỹ năng tính nhẩm nhanh. Gia sư online Học là Giỏi sẽ giúp bạn nắm vững bảng nhân 4 trong bài viết để bạn áp dụng phép nhân đối với các bài tập một cách hiệu quả.

Học thuộc bảng nhân 3 chỉ trong vài phút
schedule

Thứ ba, 11/3/2025 06:54 AM

Học thuộc bảng nhân 3 chỉ trong vài phút

Bảng nhân 3 là một trong những bảng cửu chương quan trọng giúp chúng ta ghi nhớ phép nhân với số 3 dễ dàng. Trong bài viết dưới đây, gia sư online Học là Giỏi sẽ hướng dẫn chi tiết về bảng nhân 3 để bạn áp dụng phép nhân này hiệu quả nhé.

Bảng nhân 2 là gì? Các phép tính trong bảng nhân 2
schedule

Thứ hai, 10/3/2025 09:32 AM

Bảng nhân 2 là gì? Các phép tính trong bảng nhân 2

Bảng nhân 2 giúp bạn tính nhanh và giải toán dễ dàng hơn cho phép nhân với số 2. Trong bài viết dưới đây, gia sư online Học là Giỏi sẽ cung cấp chi tiết về bảng nhân 2 để bạn có thể nắm vững phép nhân này nhé.

Cách học bảng cửu chương nhân, chia nhanh chóng và hiệu quả
schedule

Thứ sáu, 7/3/2025 10:10 AM

Cách học bảng cửu chương nhân, chia nhanh chóng và hiệu quả

Bảng cửu chương là một công cụ tính toán giúp bạn giải quyết nhanh gọn mọi bài toán trong học tập và cuộc sống. Thành thạo bảng cửu chương hỗ trợ bạn tư duy logic, tính toán linh hoạt và áp dụng vào thực tế dễ dàng hơn. Gia sư online Học là Giỏi mang đến cho bạn bảng cửu chương chi tiết dưới đây để giúp việc ghi nhớ hay học thuộc trở nên dễ dàng và hiệu quả hơn.

Tổng hợp các dạng toán Vi-ét thi vào lớp 10 mới nhất
schedule

Thứ tư, 12/2/2025 06:38 AM

Tổng hợp các dạng toán Vi-ét thi vào lớp 10 mới nhất

Hệ thức Vi-ét là một công cụ quan trọng giúp giải nhanh các bài toán về nghiệm của phương trình bậc hai. Việc nắm vững các dạng toán Vi-ét thi vào lớp 10 sẽ giúp học sinh nâng cao tư duy toán học để dễ dàng giải đề thi. Hôm nay cùng gia sư online Học là Giỏi sẽ hệ thống lại các phương pháp, đưa ra ví dụ cụ thể để giúp bạn làm chủ dạng toán này một cách hiệu quả.

Tứ giác nội tiếp là gì? Tính chất của tứ giác nội tiếp
schedule

Thứ ba, 26/11/2024 09:39 AM

Tứ giác nội tiếp là gì? Tính chất của tứ giác nội tiếp

Tứ giác nội tiếp là một trong những khái niệm quan trọng trong hình học lớp 9, đặc biệt khi tìm hiểu về các mối quan hệ giữa các điểm và đường tròn. Hãy cùng gia sư online Học là Giỏi khám phá tứ giác nội tiếp này là gì và chúng có các tính chất như thế nào nhé.

message.svg zalo.png