Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức

Tổng hợp kiến thức về định lý viet trong Toán lớp 9

schedule.svg

Thứ tư, 22/5/2024 02:24 AM

Tác giả: Admin Hoclagioi

Định lý Viet học ở chương trình đại số ở cấp 2 và cấp 3 có nội dung kiến thức quan trọng đối với học sinh. Sau đây là những thông tin về định lý viet và những điều cần biết mà Học là Giỏi đã tổng hợp được.

Mục lục [Ẩn]

Định lý Viet ( Hệ thức Viet)

Định lý Viet ( Hệ thức Viet)

Định lý Viet là công thức thể hiện mối quan hệ giữa các nghiệm của phương trình đa thức trong trường số phức và các hệ số do nhà toán học Pháp François Viète tìm ra. Viète được phiên âm theo tiếng Việt là Vi-ét.

Định lý Viet thuận

Định lý Viet: Nếu phương trình bậc hai $a x^2+b x+c=0(a \neq 0)$ có hai nghiệm 

$\mathrm{x}_1, \mathrm{x}_2$ (phân biệt hoặc trùng nhau) thì tổng các nghiệm $S=-\frac{b}{a}$ và tích các nghiệm $P=\frac{c}{a}$.

Định lý Viet đảo

Nếu có 2 số $x_1, x_2$ thoả mãn $\left\{\begin{array}{l}x_1+x_2=S \\ x_1, x_2=P\end{array}\right.$ thì chúng là nghiệm số của phương trình: $\mathrm{t}^2-\mathrm{st}+\mathrm{p}=0$

(Điều kiện $\exists 2$ số $x_1, x_2$ là $S^2-4 \mathrm{P} \geq 0$ )

Chú ý: Trước khi áp dụng hệ thức Viet cần tìm điều kiện để phương trình có 2 nghiệm

Các dạng bài tập hệ thức Viet

Các dạng bài tập hệ thức Viet

Dạng 1. Tìm tham số m để phương trình có nghiệm thỏa mãn điều kiện cho trước

Bước 1: Tìm điều kiện để phương trình có nghiệm.

Bước 2: Tính tổng S và tích P của hai nghiệm theo định lý Viet.

Bước 3: Sử dụng hệ thức Viet, kết hợp biến đổi đẳng thức, bất đẳng thức để tìm tham số.

Bước 4: Đối chiếu điều kiện và kết luận.

Dạng 2: Tìm tham số và tìm nghiệm còn lại khi biết trước một nghiệm $x_0$ của phương trình

Bước 1: Thay giá trị $x_0$ vào phương trình để tìm tham số.

Bước 2: Thay giá trị của tham số hệ thức Vi-ét để tìm nghiệm còn lại.

Bước 3: Kết luận.

Dạng 3: Khi phương trình bậc hai có nghiệm, tìm hệ thức liên hệ giữa các nghiệm không phụ thuộc vào tham số

Bước 1: Tìm điều kiện để phương trình có nghiệm.

Bước 2: Tính tổng S và tích P của hai nghiệm theo định lý Viet.

Bước 3: Tính m theo S và P.

Bước 4: Khử m và tìm ra hệ thức.

Bước 5: Kết luận.

Dạng 4. Áp dụng hệ thức Vi-ét để tính nhẩm nghiệm của phương trình bậc hai

Cho phương trình bậc hai $a x^2+b x+c=0(a \neq 0)$.

+) Nếu $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ thì phương trình có nghiệm $\mathrm{x}_1=1$ và $\mathrm{x}_2=\frac{c}{a}$.

+) Nếu $\mathrm{a}-\mathrm{b}+\mathrm{c}=0$ thì phương trình có nghiệm $\mathrm{x}_1=-1$ và $\mathrm{x}_2=-\frac{c}{a}$.

Dạng 5. Tìm hai số khi biết tổng và tích

Nếu hai số $u$ và $v$ có tổng $u+v=S$ và tích $u \cdot v=P$ thì hai số đó là nghiệm của phương trình $x^2-S x+P=0$.

Điều kiện để có u và v là $\mathrm{S}^2-4 \mathrm{P} \geq 0$.

Bài tập hệ thức Vi-ét 

Để nắm rõ kiến thức cơ bản trên thì phải luyện tập thường xuyên với các dạng bài tập. Dưới đây là các dạng cơ bản và nâng cao mà bạn có thể tham khảo.

Bài tập cơ bản

Bài 1: Cho phương trình x2 + 5x  6 = 0 có hai nghiệm phân biệt x1 , x2 . Không giải phương trình, tính giá trị của biểu thức x12 + x22 .

Lời giải 

Xét phương trình x2 + 5x  6 có a = 1, b = 5, c = -6 

Có a.c < 0 nên phương trình luôn có hai nghiệm phân biệt. 

Do phương trình có hai nghiệm phân biệt x1 , x2 nên ta áp dụng hệ thức Vi-ét, có: 

x1+x2=b/a=5/1=5x1.x2=c/a=6/1=6

Mặt khác, ta có: 

x12 + x22    = x12 + 2 x1 x2 + x22   2 x1 x2   = ( x12 + 2 x1 x2 + x22  )  2 x1 x2 = ( x1 + x2 )2   2 x1 x2    = (  5 )2  2. (  6 )    = 37

Bài 2: Cho phương trình x2 + 7 x  4 = 0 có hai nghiệm phân biệt x1 , x2 . Không giải phương trình, tính giá trị của biểu thức 1x1+1x2.

Lời giải

Xét phương trình x2+7x4=0 có a = 1, b = 7, c = -4

Do a.c < 0 nên phương trình luôn có hai nghiệm phân biệt.

Do phương trình có hai nghiệm phân biệt x1,x2 nên ta áp dụng hệ thức Vi-ét, có:

x1+x2=ba=71=7x1.x2=ca=41=4

Mặt khác, ta có:

1x1+1x2

=x2x1x2+x1x1x2

=x2+x1x1x2

=74=74

Bài tập nâng cao

Bài 3: Cho phương trình x2+5mx4=0. Tìm m để x1,x2 là nghiệm của phương trình và thỏa mãn: x12+x22+6x1x2=9.

Lời giải

Xét phương trình x2+5mx4=0 (*)

Để phương trình (*) có nghiệm khi và chỉ khi:

Δ=(5m)24.1.(4)=25m2+16>0

Mà m20 với mọi m nên Δ=25m2+16>0 với mọi m.

Do đó, phương trình (*) có nghiệm với mọi m. Gọi hai nghiệm của phương trình là x1,x2

Áp dụng hệ thức Vi-ét ta có: x1+x2=5m1=5mx1.x2=41=4

Mặt khác, ta có:

x12+x22+6x1x2=9

x12+2x1x2+x22+4x1x2=9

x1+x22+4x1x2=9

5m2+4.(4)=9

25m216=9

25m2=25

m2=1

m=±1

Vậy m = 1 hoặc m = -1 thì phương trình có hai nghiệm x1,x2 thỏa mãn: x12+x22+6x1x2=9.

Bài 4: Cho phương trình x22(m1)x3m=0 (m là tham số). Tìm m để phương trình có hai nghiệm x1,x2 thỏa mãn x12+x2210

Lời giải

Xét phương trình x22(m1)x3m=0 (*)

Ta có:

Δ=2(m1)24.1.(3m)=4(m22m+1)+12+4m

=4m28m+4+12+4m=4m24m+16

==4m24m+1+15=(2m1)2+15

Ta có: (2m1)20 với mọi m

Δ=(2m1)2+15>0 với mọi m

Do đó, phương trình (*) luôn có hai nghiệm phân biệt với mọi m . Gọi hai nghiệm của phương trình là x1,x2

Áp dụng hệ thức Vi-ét ta có:

x1+x2=2(m1)1=2m2x1.x2=3m1=3m

Mặt khác, ta có:

x12+x2210

x12+2x1x2+x222x1x210

x1+x222x1x210

2m222(3m)10

4m28m+4+6+2m10

4m26m0

2m(2m3)0

m02m30m02m30m0m32m0m32m32m0

Vậy khi m32 hoặc m0 thì phương trình có hai nghiệm x1,x2 thỏa mãn x12+x2210

Xem thêm:

Tổng hợp lí thuyết về bất đẳng thức Cosi

Định lý cosin

Kết luận

Trên đây là tổng hợp lí thuyết về định lí Viet trong chương trình Toán lớp 9. Học là Giỏi mong rằng, nó sẽ gợi ý cho các bạn cách hệ thống kiến thức sáng tạo và đẹp theo cách của riêng mình, biến các công thức khô khan trở nên sinh động hơn, từ đó giúp chúng mình nhớ và áp dụng để giải được các bài toán liên quan. 

Chủ đề:

Đăng ký học thử ngay hôm nay

Để con học sớm - Ôn sâu và nhận ưu đãi học phí!

Bài viết liên quan

Tia là gì? Khái niệm cơ bản và tính chất trong hình học
schedule

Thứ năm, 28/8/2025 04:23 AM

Tia là gì? Khái niệm cơ bản và tính chất trong hình học

Trong hình học, một trong những khái niệm mà học sinh cần nắm vững chính là tia. Nhiều bạn thường đặt câu hỏi: tia là gì và cách phân biệt nó với đoạn thẳng hay đường thẳng như thế nào? Học là Giỏi sẽ giúp bạn tìm hiểu chi tiết về tia là gì, các tính chất quan trọng và những bài tập minh họa dễ hiểu qua bài viết dưới đây nhé.

Đoạn thẳng là gì? Cách tính độ dài đoạn thẳng
schedule

Thứ tư, 27/8/2025 02:03 PM

Đoạn thẳng là gì? Cách tính độ dài đoạn thẳng

Trong chương trình toán học cơ bản, từ những bài toán hình học đầu tiên, học sinh đã được làm quen với đoạn thẳng để nghiên cứu đường thẳng, góc, tam giác hay các hình đa giác phức tạp hơn. Học là Giỏi sẽ giúp bạn hiểu rõ khái niệm, tính chất và các dạng bài tập cũng như nắm bắt được cách tính độ dài đoạn thẳng nhé.

Đường thẳng và những kiến thức nền tảng cần ghi nhớ
schedule

Thứ tư, 27/8/2025 08:20 AM

Đường thẳng và những kiến thức nền tảng cần ghi nhớ

Trong hình học, đường thẳng là một trong những khái niệm cơ bản và xuất hiện nhiều trong các đề thi và bài kiểm tra. Học là Giỏi sẽ giúp bạn hiểu rõ hơn về đặc điểm, ứng dụng và cách giải bài tập liên quan đến đường thẳng thông qua bài viết này nhé.

Hướng dẫn học bảng nhân 6 hiệu quả tại nhà
schedule

Thứ tư, 27/8/2025 03:12 AM

Hướng dẫn học bảng nhân 6 hiệu quả tại nhà

Bảng nhân 6 là một phần không thể thiếu trong bảng cửu chương, thường xuất hiện trong nhiều dạng bài tập và tình huống thực tế. Học là Giỏi sẽ giúp bạn hiểu rõ quy luật, ghi nhớ dễ dàng và thực hành hiệu quả bảng nhân 6.

Tổng hợp công thức tính phương sai và độ lệch chuẩn dễ nhớ
schedule

Thứ ba, 26/8/2025 09:12 AM

Tổng hợp công thức tính phương sai và độ lệch chuẩn dễ nhớ

Trong thống kê và xác suất, cách dữ liệu phân tán quanh giá trị trung bình có ý nghĩa trong học tập cũng như thực tiễn. Hai công thức này thường được sử dụng để đo lường mức độ biến động đó chính là phương sai và độ lệch chuẩn. Học là Giỏi sẽ giúp bạn nắm vững kiến thức cơ bản về phương sai và độ lệch chuẩn, kèm theo bài tập minh họa dễ hiểu.

Tập hợp con là gì? Các trường hợp đặc biệt của tập hợp con
schedule

Thứ hai, 25/8/2025 09:45 AM

Tập hợp con là gì? Các trường hợp đặc biệt của tập hợp con

Khái niệm tập hợp hỗ trợ học sinh làm quen với cách mô tả và phân loại đối tượng trong môn toán cấp 3. Trong đó, tập hợp con là gì luôn là câu hỏi thường gặp bởi đây là kiến thức cơ bản nhưng lại có ứng dụng trong nhiều dạng bài tập. Học là Giỏi sẽ giúp bạn nắm vững khái niệm, tính chất và cách vận dụng tập hợp con một cách rõ ràng, dễ hiểu.

message.svg zalo.png