Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức

Tổng hợp kiến thức về định lý viet trong Toán lớp 9

schedule.svg

Thứ tư, 22/5/2024 02:24 AM

Tác giả: Admin Hoclagioi

Định lý Viet học ở chương trình đại số ở cấp 2 và cấp 3 có nội dung kiến thức quan trọng đối với học sinh. Sau đây là những thông tin về định lý viet và những điều cần biết mà Học là Giỏi đã tổng hợp được.

Mục lục [Ẩn]

Định lý Viet ( Hệ thức Viet)

Định lý Viet ( Hệ thức Viet)

Định lý Viet là công thức thể hiện mối quan hệ giữa các nghiệm của phương trình đa thức trong trường số phức và các hệ số do nhà toán học Pháp François Viète tìm ra. Viète được phiên âm theo tiếng Việt là Vi-ét.

Định lý Viet thuận

Định lý Viet: Nếu phương trình bậc hai $a x^2+b x+c=0(a \neq 0)$ có hai nghiệm 

$\mathrm{x}_1, \mathrm{x}_2$ (phân biệt hoặc trùng nhau) thì tổng các nghiệm $S=-\frac{b}{a}$ và tích các nghiệm $P=\frac{c}{a}$.

Định lý Viet đảo

Nếu có 2 số $x_1, x_2$ thoả mãn $\left\{\begin{array}{l}x_1+x_2=S \\ x_1, x_2=P\end{array}\right.$ thì chúng là nghiệm số của phương trình: $\mathrm{t}^2-\mathrm{st}+\mathrm{p}=0$

(Điều kiện $\exists 2$ số $x_1, x_2$ là $S^2-4 \mathrm{P} \geq 0$ )

Chú ý: Trước khi áp dụng hệ thức Viet cần tìm điều kiện để phương trình có 2 nghiệm

Các dạng bài tập hệ thức Viet

Các dạng bài tập hệ thức Viet

Dạng 1. Tìm tham số m để phương trình có nghiệm thỏa mãn điều kiện cho trước

Bước 1: Tìm điều kiện để phương trình có nghiệm.

Bước 2: Tính tổng S và tích P của hai nghiệm theo định lý Viet.

Bước 3: Sử dụng hệ thức Viet, kết hợp biến đổi đẳng thức, bất đẳng thức để tìm tham số.

Bước 4: Đối chiếu điều kiện và kết luận.

Dạng 2: Tìm tham số và tìm nghiệm còn lại khi biết trước một nghiệm $x_0$ của phương trình

Bước 1: Thay giá trị $x_0$ vào phương trình để tìm tham số.

Bước 2: Thay giá trị của tham số hệ thức Vi-ét để tìm nghiệm còn lại.

Bước 3: Kết luận.

Dạng 3: Khi phương trình bậc hai có nghiệm, tìm hệ thức liên hệ giữa các nghiệm không phụ thuộc vào tham số

Bước 1: Tìm điều kiện để phương trình có nghiệm.

Bước 2: Tính tổng S và tích P của hai nghiệm theo định lý Viet.

Bước 3: Tính m theo S và P.

Bước 4: Khử m và tìm ra hệ thức.

Bước 5: Kết luận.

Dạng 4. Áp dụng hệ thức Vi-ét để tính nhẩm nghiệm của phương trình bậc hai

Cho phương trình bậc hai $a x^2+b x+c=0(a \neq 0)$.

+) Nếu $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ thì phương trình có nghiệm $\mathrm{x}_1=1$ và $\mathrm{x}_2=\frac{c}{a}$.

+) Nếu $\mathrm{a}-\mathrm{b}+\mathrm{c}=0$ thì phương trình có nghiệm $\mathrm{x}_1=-1$ và $\mathrm{x}_2=-\frac{c}{a}$.

Dạng 5. Tìm hai số khi biết tổng và tích

Nếu hai số $u$ và $v$ có tổng $u+v=S$ và tích $u \cdot v=P$ thì hai số đó là nghiệm của phương trình $x^2-S x+P=0$.

Điều kiện để có u và v là $\mathrm{S}^2-4 \mathrm{P} \geq 0$.

Bài tập hệ thức Vi-ét 

Để nắm rõ kiến thức cơ bản trên thì phải luyện tập thường xuyên với các dạng bài tập. Dưới đây là các dạng cơ bản và nâng cao mà bạn có thể tham khảo.

Bài tập cơ bản

Bài 1: Cho phương trình x2 + 5x  6 = 0 có hai nghiệm phân biệt x1 , x2 . Không giải phương trình, tính giá trị của biểu thức x12 + x22 .

Lời giải 

Xét phương trình x2 + 5x  6 có a = 1, b = 5, c = -6 

Có a.c < 0 nên phương trình luôn có hai nghiệm phân biệt. 

Do phương trình có hai nghiệm phân biệt x1 , x2 nên ta áp dụng hệ thức Vi-ét, có: 

x1+x2=b/a=5/1=5x1.x2=c/a=6/1=6

Mặt khác, ta có: 

x12 + x22    = x12 + 2 x1 x2 + x22   2 x1 x2   = ( x12 + 2 x1 x2 + x22  )  2 x1 x2 = ( x1 + x2 )2   2 x1 x2    = (  5 )2  2. (  6 )    = 37

Bài 2: Cho phương trình x2 + 7 x  4 = 0 có hai nghiệm phân biệt x1 , x2 . Không giải phương trình, tính giá trị của biểu thức 1x1+1x2.

Lời giải

Xét phương trình x2+7x4=0 có a = 1, b = 7, c = -4

Do a.c < 0 nên phương trình luôn có hai nghiệm phân biệt.

Do phương trình có hai nghiệm phân biệt x1,x2 nên ta áp dụng hệ thức Vi-ét, có:

x1+x2=ba=71=7x1.x2=ca=41=4

Mặt khác, ta có:

1x1+1x2

=x2x1x2+x1x1x2

=x2+x1x1x2

=74=74

Bài tập nâng cao

Bài 3: Cho phương trình x2+5mx4=0. Tìm m để x1,x2 là nghiệm của phương trình và thỏa mãn: x12+x22+6x1x2=9.

Lời giải

Xét phương trình x2+5mx4=0 (*)

Để phương trình (*) có nghiệm khi và chỉ khi:

Δ=(5m)24.1.(4)=25m2+16>0

Mà m20 với mọi m nên Δ=25m2+16>0 với mọi m.

Do đó, phương trình (*) có nghiệm với mọi m. Gọi hai nghiệm của phương trình là x1,x2

Áp dụng hệ thức Vi-ét ta có: x1+x2=5m1=5mx1.x2=41=4

Mặt khác, ta có:

x12+x22+6x1x2=9

x12+2x1x2+x22+4x1x2=9

x1+x22+4x1x2=9

5m2+4.(4)=9

25m216=9

25m2=25

m2=1

m=±1

Vậy m = 1 hoặc m = -1 thì phương trình có hai nghiệm x1,x2 thỏa mãn: x12+x22+6x1x2=9.

Bài 4: Cho phương trình x22(m1)x3m=0 (m là tham số). Tìm m để phương trình có hai nghiệm x1,x2 thỏa mãn x12+x2210

Lời giải

Xét phương trình x22(m1)x3m=0 (*)

Ta có:

Δ=2(m1)24.1.(3m)=4(m22m+1)+12+4m

=4m28m+4+12+4m=4m24m+16

==4m24m+1+15=(2m1)2+15

Ta có: (2m1)20 với mọi m

Δ=(2m1)2+15>0 với mọi m

Do đó, phương trình (*) luôn có hai nghiệm phân biệt với mọi m . Gọi hai nghiệm của phương trình là x1,x2

Áp dụng hệ thức Vi-ét ta có:

x1+x2=2(m1)1=2m2x1.x2=3m1=3m

Mặt khác, ta có:

x12+x2210

x12+2x1x2+x222x1x210

x1+x222x1x210

2m222(3m)10

4m28m+4+6+2m10

4m26m0

2m(2m3)0

m02m30m02m30m0m32m0m32m32m0

Vậy khi m32 hoặc m0 thì phương trình có hai nghiệm x1,x2 thỏa mãn x12+x2210

Xem thêm:

Tổng hợp lí thuyết về bất đẳng thức Cosi

Định lý cosin

Kết luận

Trên đây là tổng hợp lí thuyết về định lí Viet trong chương trình Toán lớp 9. Học là Giỏi mong rằng, nó sẽ gợi ý cho các bạn cách hệ thống kiến thức sáng tạo và đẹp theo cách của riêng mình, biến các công thức khô khan trở nên sinh động hơn, từ đó giúp chúng mình nhớ và áp dụng để giải được các bài toán liên quan. 

Chủ đề:

Đăng ký học thử ngay hôm nay

Để con học sớm - Ôn sâu và nhận ưu đãi học phí!

Bài viết liên quan

Tử số và mẫu số là gì? Kiến thức nền tảng về phân số
schedule

Thứ tư, 2/7/2025 03:40 AM

Tử số và mẫu số là gì? Kiến thức nền tảng về phân số

Khi học về phân số, chắc hẳn bạn đã từng thắc mắc: Tử số và mẫu số là gì? Đây là khái niệm xuất hiện thường xuyên trong chương trình Toán tiểu học. Học là Giỏi sẽ cung cấp chi tiết kiến thức trong bài viết sau giúp bạn hiểu rõ tử số và mẫu số trong toán học nhé.

Các phương pháp quy đồng mẫu số các phân số
schedule

Thứ ba, 1/7/2025 08:07 AM

Các phương pháp quy đồng mẫu số các phân số

Trong chương trình toán tiểu học, phân số luôn là phần kiến thức khiến nhiều học sinh cảm thấy khó tiếp cận. Đặc biệt, việc quy đồng mẫu số thường gây nhầm lẫn nếu không được hướng dẫn cụ thể. Học là Giỏi sẽ giúp bạn giải đáp tất cả những thắc mắc về quy đồng mẫu số các phân số một cách dễ hiểu và chi tiết.

Đáp án, đề thi môn Toán vào 10 tỉnh Lâm Đồng 2025
schedule

Thứ ba, 17/6/2025 04:12 AM

Đáp án, đề thi môn Toán vào 10 tỉnh Lâm Đồng 2025

Học là Giỏi tổng hợp trọn bộ đáp án, đề thi môn Toán vào 10 tỉnh Lâm Đồng 2025 nhằm hỗ trợ học sinh thuận tiện trong việc so sánh kết quả và tự đánh giá năng lực làm bài.

Đáp án, đề thi môn Toán THPT Quốc gia 2025
schedule

Thứ sáu, 13/6/2025 07:11 AM

Đáp án, đề thi môn Toán THPT Quốc gia 2025

Bài viết cập nhật nhanh chóng và chính xác đề thi cùng đáp án giúp thí sinh so sánh kết quả và định hướng các nguyện vọng phù hợp. Học là Giỏi cung cấp đề thi chính thức môn Toán THPT Quốc gia 2025 được thi vào chiều ngày 26/06/2025 kèm đáp án chi tiết từng mã đề, hỗ trợ thí sinh tra cứu dễ dàng và tiện lợi.

Đáp án, đề thi môn Toán vào 10 tỉnh Đắk Nông 2025
schedule

Thứ sáu, 6/6/2025 09:55 AM

Đáp án, đề thi môn Toán vào 10 tỉnh Đắk Nông 2025

Học là Giỏi sẽ cung cấp đáp án, đề thi môn Toán vào 10 tỉnh Đắk Nông 2025 giúp các em dễ dàng đối chiếu bài làm, từ đó ước lượng điểm số một cách chính xác.

Đáp án, đề thi môn Toán vào 10 tỉnh Trà Vinh 2025
schedule

Thứ sáu, 6/6/2025 09:20 AM

Đáp án, đề thi môn Toán vào 10 tỉnh Trà Vinh 2025

Học là Giỏi cung cấp đầy đủ đáp án, đề thi môn Toán vào 10 tỉnh Trà Vinh 2025 nhằm hỗ trợ học sinh tra cứu, đánh giá điểm bài làm của bản thân.

message.svg zalo.png