Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Định lý Viet học ở chương trình đại số ở cấp 2 và cấp 3 có nội dung kiến thức quan trọng đối với học sinh. Sau đây là những thông tin về định lý viet và những điều cần biết mà Học là Giỏi đã tổng hợp được.
Mục lục [Ẩn]
Định lý Viet là công thức thể hiện mối quan hệ giữa các nghiệm của phương trình đa thức trong trường số phức và các hệ số do nhà toán học Pháp François Viète tìm ra. Viète được phiên âm theo tiếng Việt là Vi-ét.
Định lý Viet: Nếu phương trình bậc hai $a x^2+b x+c=0(a \neq 0)$ có hai nghiệm
$\mathrm{x}_1, \mathrm{x}_2$ (phân biệt hoặc trùng nhau) thì tổng các nghiệm $S=-\frac{b}{a}$ và tích các nghiệm $P=\frac{c}{a}$.
Nếu có 2 số $x_1, x_2$ thoả mãn $\left\{\begin{array}{l}x_1+x_2=S \\ x_1, x_2=P\end{array}\right.$ thì chúng là nghiệm số của phương trình: $\mathrm{t}^2-\mathrm{st}+\mathrm{p}=0$
(Điều kiện $\exists 2$ số $x_1, x_2$ là $S^2-4 \mathrm{P} \geq 0$ )
Chú ý: Trước khi áp dụng hệ thức Viet cần tìm điều kiện để phương trình có 2 nghiệm
Dạng 1. Tìm tham số m để phương trình có nghiệm thỏa mãn điều kiện cho trước
Bước 1: Tìm điều kiện để phương trình có nghiệm.
Bước 2: Tính tổng S và tích P của hai nghiệm theo định lý Viet.
Bước 3: Sử dụng hệ thức Viet, kết hợp biến đổi đẳng thức, bất đẳng thức để tìm tham số.
Bước 4: Đối chiếu điều kiện và kết luận.
Dạng 2: Tìm tham số và tìm nghiệm còn lại khi biết trước một nghiệm $x_0$ của phương trình
Bước 1: Thay giá trị $x_0$ vào phương trình để tìm tham số.
Bước 2: Thay giá trị của tham số hệ thức Vi-ét để tìm nghiệm còn lại.
Bước 3: Kết luận.
Dạng 3: Khi phương trình bậc hai có nghiệm, tìm hệ thức liên hệ giữa các nghiệm không phụ thuộc vào tham số
Bước 1: Tìm điều kiện để phương trình có nghiệm.
Bước 2: Tính tổng S và tích P của hai nghiệm theo định lý Viet.
Bước 3: Tính m theo S và P.
Bước 4: Khử m và tìm ra hệ thức.
Bước 5: Kết luận.
Dạng 4. Áp dụng hệ thức Vi-ét để tính nhẩm nghiệm của phương trình bậc hai
Cho phương trình bậc hai $a x^2+b x+c=0(a \neq 0)$.
+) Nếu $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ thì phương trình có nghiệm $\mathrm{x}_1=1$ và $\mathrm{x}_2=\frac{c}{a}$.
+) Nếu $\mathrm{a}-\mathrm{b}+\mathrm{c}=0$ thì phương trình có nghiệm $\mathrm{x}_1=-1$ và $\mathrm{x}_2=-\frac{c}{a}$.
Dạng 5. Tìm hai số khi biết tổng và tích
Nếu hai số $u$ và $v$ có tổng $u+v=S$ và tích $u \cdot v=P$ thì hai số đó là nghiệm của phương trình $x^2-S x+P=0$.
Điều kiện để có u và v là $\mathrm{S}^2-4 \mathrm{P} \geq 0$.
Để nắm rõ kiến thức cơ bản trên thì phải luyện tập thường xuyên với các dạng bài tập. Dưới đây là các dạng cơ bản và nâng cao mà bạn có thể tham khảo.
Bài 1: Cho phương trình = 0 có hai nghiệm phân biệt . Không giải phương trình, tính giá trị của biểu thức.
Lời giải
Xét phương trình có a = 1, b = 5, c = -6
Có a.c < 0 nên phương trình luôn có hai nghiệm phân biệt.
Do phương trình có hai nghiệm phân biệt nên ta áp dụng hệ thức Vi-ét, có:
Mặt khác, ta có:
Bài 2: Cho phương trình có hai nghiệm phân biệt . Không giải phương trình, tính giá trị của biểu thức .
Lời giải
Xét phương trình có a = 1, b = 7, c = -4
Do a.c < 0 nên phương trình luôn có hai nghiệm phân biệt.
Do phương trình có hai nghiệm phân biệt nên ta áp dụng hệ thức Vi-ét, có:
Mặt khác, ta có:
Bài 3: Cho phương trình . Tìm m để là nghiệm của phương trình và thỏa mãn: .
Lời giải
Xét phương trình (*)
Để phương trình (*) có nghiệm khi và chỉ khi:
Mà với mọi m nên với mọi m.
Do đó, phương trình (*) có nghiệm với mọi m. Gọi hai nghiệm của phương trình là
Áp dụng hệ thức Vi-ét ta có:
Mặt khác, ta có:
Vậy m = 1 hoặc m = -1 thì phương trình có hai nghiệm thỏa mãn: .
Bài 4: Cho phương trình (m là tham số). Tìm m để phương trình có hai nghiệm thỏa mãn
Lời giải
Xét phương trình (*)
Ta có:
=
Ta có: với mọi m
với mọi m
Do đó, phương trình (*) luôn có hai nghiệm phân biệt với mọi m . Gọi hai nghiệm của phương trình là
Áp dụng hệ thức Vi-ét ta có:
Mặt khác, ta có:
Vậy khi hoặc thì phương trình có hai nghiệm thỏa mãn
Xem thêm:
Tổng hợp lí thuyết về bất đẳng thức Cosi
Trên đây là tổng hợp lí thuyết về định lí Viet trong chương trình Toán lớp 9. Học là Giỏi mong rằng, nó sẽ gợi ý cho các bạn cách hệ thống kiến thức sáng tạo và đẹp theo cách của riêng mình, biến các công thức khô khan trở nên sinh động hơn, từ đó giúp chúng mình nhớ và áp dụng để giải được các bài toán liên quan.
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
STEM là gì? Lợi ích và ứng dụng trong giáo dục hiện đại
Thứ ba, 12/8/2025Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Bảng tuần hoàn nguyên tố hóa học theo chương trình mới
Thứ hai, 15/4/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ hai, 18/8/2025 08:35 AM
Bí quyết luyện toán ôn thi vào 10 dễ đạt điểm cao
Toán ôn thi vào 10 luôn là nỗi lo lớn của nhiều học sinh khi kỳ thi chuyển cấp. Đây là môn học đòi hỏi tư duy logic, khả năng phân tích. Nhiều em dù chăm chỉ học nhưng vẫn gặp khó khăn trong việc hệ thống kiến thức và làm quen với dạng đề thi. Học là GIỏi sẽ giúp các em có định hướng rõ ràng, tự tin hơn trên hành trình đạt điểm cao và chinh phục môn toán ôn thi vào 10 trong bài viết này nhé.
Thứ sáu, 8/8/2025 03:59 AM
Hướng dẫn áp dụng dấu hiệu chia hết cho 11 hiệu quả
Trong toán học, ngoài việc thực hiện phép chia thông thường còn có những mẹo giúp ta nhận biết nhanh dấu hiệu chia hết cho 11. Học là Giỏi sẽ giúp bạn hiểu rõ quy tắc, cách vận dụng và thực hành qua các bài tập cơ bản đến nâng cao giúp bạn nắm chắc kiến thức và tự tin khi gặp dạng bài này nhé.
Thứ năm, 7/8/2025 09:46 AM
Cách nhận biết dấu hiệu chia hết cho 8 đơn giản
Dấu hiệu chia hết cho 8 là một kiến thức xuất hiện trong các dạng đề kiểm tra hoặc ở nhiều bài tập. Học là Giỏi sẽ giúp các bạn nắm vững các dạng toán về dấu hiệu chia hết cho 8 để dễ dàng thực hiện phép chia phức tạp nhé.
Thứ tư, 6/8/2025 06:57 AM
Tổng hợp kiến thức về dấu hiệu chia hết cho 6 cấp 2
Trong quá trình tính toán cơ bản, việc nắm vững dấu hiệu chia hết cho 6 giúp học sinh rút gọn phép chia nhanh hơn trong việc giải toán có lời giải, đặc biệt là các bài toán tìm số hoặc phân tích số. Học là Giỏi sẽ giúp các bạn học sinh nắm được dấu hiệu chia hết cho 6 và các dạng bài tập qua bài viết dưới đây nhé.
Thứ ba, 5/8/2025 07:37 AM
Mẹo học nhanh dấu hiệu chia hết cho 7 cho học sinh
Trong quá trình học toán, việc nhận biết dấu hiệu chia hết cho 7 là một kỹ năng cần thiết nhưng thường bị bỏ sót. Học là Giỏi sẽ giúp bạn nắm rõ một số phương pháp đặc biệt giúp bạn hoàn toàn có thể xác định dấu hiệu chia hết cho 7 thông qua bài viết này nhé.
Thứ ba, 5/8/2025 03:01 AM
Cách xác định dấu hiệu chia hết cho 2, 3, 5, 9 chính xác nhất
Hiểu và vận dụng đúng dấu hiệu chia hết cho 2, 3, 5, 9 sẽ giúp học sinh rút gọn phép chia nhanh chóng và chính xác. Học là Giỏi sẽ giúp bạn hiểu rõ từng dấu hiệu và biết cách xác định các dấu hiệu chia hết của từng số trong bài viết này nhé.