Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Trong hình học phẳng, đa giác là một khái niệm quan trọng và quen thuộc thường gặp với học sinh lớp 8. Loại hình này hiện diện khắp nơi, từ những họa tiết đơn giản trong nghệ thuật đến những cấu trúc phức tạp trong kiến trúc. Vì vậy, gia sư online Học là Giỏi sẽ cùng bạn khám phá sâu hơn về loại hình này trong cả lý thuyết và thực tiễn nhé.
Mục lục [Ẩn]
Đa giác là hình học bạn sẽ dễ dàng thấy được ở thực tiễn hay các bài tập, đặc biệt sẽ xuất hiện phổ biến trong kiến thức hình học lớp 8. Để nắm bắt kiến thức cơ bản, dưới đây là khái niệm để bạn có cái nhìn rõ hơn về loại hình này.
Một đa giác A1, A2, ..., An là hình tạo thành bởi n đoạn thẳng A1A2, A2A3, ..., AnA1, trong đó không có hai đoạn thẳng nào nằm trên cùng một đường thẳng. Ta có:
- Đa giác với n đỉnh được gọi là hình n-giác hoặc hình n cạnh.
- Đường chéo của đa giác là đoạn thẳng nối hai đỉnh không liền kề nhau.
Ví dụ:
Hình ABCDEF có 6 cạnh, còn được gọi là lục giác.
Hình GHIJK có 5 cạnh, còn gọi là ngũ giác.
Đây là loại đa giác mà toàn bộ hình nằm về một phía của đường thẳng chứa bất kỳ cạnh nào của nó.
Ví dụ: Hình ABCDEF là đa giác lồi vì nó hoàn toàn nằm về một phía của mỗi đường thẳng chứa bất kỳ cạnh nào của nó.
Hình GHIJK không phải là đa giác lồi do không nằm hoàn toàn về một phía của đường thẳng chứa cạnh JK.
Chú ý: Từ nay, khi nhắc đến đa giác mà không có chỉ định cụ thể, ta sẽ mặc định đó là đa giác lồi.
- Đa giác đều là loại đa giác có các cạnh bằng nhau và các góc trong bằng nhau. Loại hình này có tính đối xứng cao, thường được sử dụng trong thiết kế và xuất hiện trong nhiều mô hình tự nhiên.
Lưu ý: Số đo của mỗi góc trong một đa giác đều với n đỉnh được tính bằng công thức .
Loại hình này là một khái niệm quan trọng trong hình học phẳng với nhiều tính chất đặc trưng làm đa dạng thêm cách chúng được ứng dụng. Những tính chất này không chỉ có ý nghĩa trong lý thuyết mà còn có giá trị thực tiễn.
Tổng số đo các góc trong: Với một đa giác có n đỉnh, tổng các góc trong được tính bằng công thức ( n − 2 ).180 ° với n là số đỉnh, n > 2.
Số đường chéo: Số đường chéo của một đa giác với n đỉnh được tính bằng công thức với n là số đỉnh và n > 3.
Tính chất đối xứng: Nếu có một đường thẳng đi qua trung điểm của một cạnh và trung điểm của đường chéo chia thành hai phần thì hình sẽ đối xứng qua đường thẳng đó.
Những tính chất này giúp nhận diện và giải quyết nhiều vấn đề toán học, từ đơn giản đến phức tạp, và là cơ sở cho việc ứng dụng trong các lĩnh vực như thiết kế, kiến trúc, và kỹ thuật.
Hình học này không chỉ là một khái niệm toán học mà còn có nhiều ứng dụng thực tiễn quan trọng trong nhiều lĩnh vực như kỹ thuật, nghệ thuật, và khoa học máy tính.
Kiến trúc và xây dựng: Hình học này thường được sử dụng trong việc thiết kế các khuôn viên và các công trình kiến trúc độc đáo như lăng kính, kim tự tháp.
Đồ họa máy tính: Trong lĩnh vực đồ họa, đặc biệt là đa giác lồi, được sử dụng để mô phỏng hình dạng và hiển thị các đối tượng 3D.
Nghệ thuật và thiết kế: Loại hình này có ảnh hưởng lớn trong việc tạo ra các mẫu thiết kế thời trang và tác phẩm nghệ thuật trừu tượng.
Các đặc tính như đối xứng và cân bằng khiến chúng trở thành công cụ hữu ích trong nhiều lĩnh vực, giúp các nhà khoa học và nghệ sĩ không ngừng sáng tạo và ứng dụng.
Để nắm rõ kiến thức cơ bản trên thì phải luyện tập thường xuyên với các dạng bài tập. Dưới đây là các dạng cơ bản và nâng cao.
Bài 1: Cho ngũ giác ABCDE. Kẻ các đường chéo AC và AD. Kể tên các đa giác có trong hình vẽ.
Các đa giác có trong hình vẽ là:
+ Tam giác ABC; ACD; ADE
+ Tứ giác ABCD; ACDE
+ Ngũ giác là ABCDE
Bài 2: Tính số đường chéo của một hình lục giác.
Vì lục giác là hình có 6 đỉnh nên áp dụng công thức tính số đường chéo của đa giác ta có:
Số đường chéo của hình lục giác là:
= = 9 (đường chéo)
Bài 3: Cho hình thoi ABCD có = 60 ° . Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh MBNPDQ là lục giác đều.
Vì ABCD là hình thoi nên AB = BC = CD = DA
Lại có M là trung điểm của AB ⇒ BM = AM = AB
N là trung điểm của BC ⇒ CN = NB = BC
P là trung điểm của CD ⇒ PC = PD = DC
Q là trung điểm của AD ⇒ AQ = QD = AD
Do đó: AM = BM = CN = NB = CP = PD = AQ = QD (1)
Xét tam giác AQM có:
AQ = AM
= 60 °
⇒ Δ AQM là tam giác đều
⇒ AM = MQ (2)
Do ABCD là hình thoi
⇒ = = 60 ° (tính chất)
Xét tam giác CPN có
CP = CN
= 60 °
⇒ Δ CPN là tam giác đều
⇒ CN = PN (3)
Từ (1); (2); (3) ⇒ BM = BN = NP = PD = DQ = QM (*)
Xét hình thoi ABCD có
= = 60 ° ⇒ = = 120 ° (4)
Ta có: và là hai góc kề bù
⇒ + = 180 °
Mà = 60 ° do tam giác AMQ đều
⇒ + 60 ° = 180 °
⇒ = 120 ° (5)
Chứng minh tương tự ta được các góc = = = 120 ° (6)
Từ (4); (5); (6)
⇒ = = = = = = 120 ° (**)
Xét lục giác MBNPDQ có:
BM = BN = NP = PD = DQ = QM (theo (*))
= = = = = = 120 ° (theo (**))
Vậy lục giác MBNPDQ là lục gác đều.
Bài 4: Một đa giác đều có n cạnh. Mỗi góc của nó bằng 156°. Tính số cạnh của hình.
Áp dụng công thức tính số đo mỗi góc trong đa giác đều ta có:
( n − 2 ) 180 °/ n = 156 °
⇔ ( n − 2 ) 180 ° = n. 156 °
⇔ n .180 ° − 360 ° = n .156 °
⇔ n .180 ° − n .156 ° = 360 °
⇔ n.( 180 ° − 156 ° ) = 360 °
⇔ n .24 ° = 360 °
⇔ n = 360 ° : 24 °
⇔ n = 15
Vậy đa giác đều này có 15 cạnh.
Xem thêm:
Tổng hợp kiến thức về đối xứng trục lớp 8
Tổng quát kiến thức về hình bình hành lớp 8
Đa giác là hình học thú vị trong toán học đóng góp nhiều ứng dụng cho các ngành khác nhau qua những tính chất hình học đơn giản. Qua bài học này, trung tâm gia sư online Học là Giỏi hi vọng bạn đã nắm bắt kiến thức trên và dễ dàng ứng dụng trong các bài toán sau này.
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Bí kíp chinh phục các hằng đẳng thức mở rộng
Thứ tư, 14/8/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Thể thơ song thất lục bát trong văn chương Việt Nam
Thứ ba, 28/5/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ sáu, 16/5/2025 09:20 AM
Tổng hợp đề ôn tập hè lớp 5 lên 6 môn toán có chọn lọc
Đối với các bạn học sinh chuẩn bị lên lớp 6, việc ôn tập hè lớp 5 lên 6 môn toán giúp nhớ lại chương trình học cũ, tự tin bước vào cấp học quan trọng tiếp theo. Hôm nay gia sư online Học là Giỏi cung cấp kho đề ôn luyện đa dạng để hỗ trợ các em củng cố kiến thức vững chắc trong quá trình học tập nhé.
Thứ tư, 7/5/2025 08:59 AM
Kinh nghiệm chọn gia sư toán lớp 11 tại Hà Nội phù hợp nhất
Nhiều học sinh luôn gặp khó khăn với chương trình toán nâng cao và thiếu các phương pháp học hiệu quả khi vào lớp 11. Vì vậy, việc tìm gia sư toán lớp 11 tại Hà Nội trở thành giải pháp tối ưu giúp học sinh nắm chắc kiến thức và cải thiện thành tích học tập. Gia sư online Học là Giỏi sẽ giúp bạn hiểu cách lựa chọn gia sư toán lớp 11 tại Hà Nội sao cho phù hợp nhất.
Thứ tư, 7/5/2025 07:52 AM
Tại sao cần tìm gia sư toán lớp 10 tại Hà Nội?
Lựa chọn gia sư toán lớp 10 tại Hà Nội giúp con kịp thời tháo gỡ những vướng mắc trong quá trình học, đồng thời tạo tiền đề vững chắc để con tự tin trước những thử thách học tập. Trong bài viết dưới đây, Gia sư online Học là Giỏi sẽ chỉ cho các bậc phụ huynh cách tìm gia sư toán lớp 10 tại Hà Nội sao cho phù hợp nhất nhé.
Thứ hai, 5/5/2025 10:27 AM
Làm thế nào để chọn gia sư toán lớp 7 tại Hà Nội?
Với học sinh lớp 7, toán học là nền tảng của các môn học liên quan đến tính toán và cũng là bước đệm cho những kỳ thi quan trọng sau này. Gia sư online Học là Giỏi sẽ chia sẻ cách chọn gia sư toán lớp 7 tại Hà Nội trong bài viết dưới đây nhé.
Thứ hai, 28/4/2025 06:51 AM
Bí quyết cách học giỏi toán mọi học sinh cần biết
Toán học luôn là một môn học quan trọng trong chương trình giáo dục và cả trong cuộc sống hàng ngày. Tuy nhiên, không phải ai cũng dễ dàng nắm vững được các kiến thức và kỹ năng cần thiết để học giỏi môn toán. Hãy cùng gia sư online Học là Giỏi cung cấp những cách học giỏi toán đơn giản, giúp bạn tự tin và thành công trong việc học tập.
Thứ sáu, 25/4/2025 07:16 AM
Mẹo học bảng nhân 5 cực dễ hiểu cho học sinh tiểu học
Bảng nhân 5 là một phần không thể thiếu trong hệ thống bảng cửu chương hỗ trợ học sinh ghi nhớ và vận dụng phép nhân với số 5 một cách nhanh chóng. Hôm nay gia sư online Học là Giỏi sẽ cùng bạn khám phá chi tiết bảng nhân 5 nhé.