Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Thứ hai, 21/10/2024 08:57 AM
Tác giả: Admin Hoclagioi
Biểu đồ đoạn thẳng là những đường thẳng nối liền các điểm giúp ta hiểu rõ sự biến đổi của dữ liệu qua thời gian. Với khả năng thể hiện xu hướng và mối quan hệ giữa các đại lượng một cách dễ hiểu, biểu đồ đoạn thẳng đã trở thành công cụ không thể thiếu trong nhiều lĩnh vực, từ học thuật cho đến kinh doanh. Vậy hãy cùng gia sư online Học là Giỏi khám phá sâu hơn về loại biểu đồ thú vị này nhé!
Mục lục [Ẩn]
Biểu đồ đoạn thẳng là một trong những cách phổ biến và đơn giản để mô tả dữ liệu trong các bài toán thực tiễn. Trước tiên, hãy cùng tìm hiểu kỹ hơn về nó.
Biểu đồ đoạn thẳng là một biểu đồ sử dụng các đoạn thẳng để nối các điểm dữ liệu lại với nhau, thường được sử dụng để minh họa sự biến đổi của một đại lượng nào đó theo thời gian.
Các thành phần chính của biểu đồ đoạn thẳng:
Tiêu đề: Thường nằm ở phần trên cùng của biểu đồ, mô tả nội dung chính mà biểu đồ thể hiện.
Trục ngang: Đây là trục biểu diễn thời gian, thường nằm ở dưới cùng.
Trục đứng: Trục này dùng để biểu diễn giá trị của đại lượng mà chúng ta đang theo dõi.
Các điểm dữ liệu: Mỗi điểm trên biểu đồ đại diện cho giá trị của đại lượng tại một thời điểm nhất định, và các điểm này được nối lại với nhau bằng các đoạn thẳng, thể hiện sự thay đổi liên tục theo thời gian.
Ví dụ:
Chẳng hạn, để minh họa sự biến động dân số của Việt Nam qua 5 kỳ tổng điều tra từ năm 1979 đến 2019, chúng ta có thể sử dụng biểu đồ đoạn thẳng.
Mỗi điểm trên biểu đồ sẽ tương ứng với số liệu dân số trong một năm điều tra. Chẳng hạn, điểm đầu tiên trên biểu đồ có thể cho thấy rằng vào năm 1979, dân số Việt Nam đạt 54,7 triệu người.
Chú ý: Bạn có thể sử dụng các ký hiệu khác nhau như chấm tròn, dấu nhân,... để biểu thị các điểm dữ liệu trên biểu đồ.
Để thực sự hiểu được nội dung của biểu đồ, chúng ta cần phải biết cách đọc và phân tích những thông tin mà nó mang lại. Dưới đây là một số bước đơn giản giúp bạn làm điều đó một cách hiệu quả.
Điều đầu tiên khi nhìn vào biểu đồ đoạn thẳng là xu hướng. Xu hướng ở đây chỉ ra cách mà giá trị của đại lượng (có thể là doanh thu, dân số, nhiệt độ...) thay đổi theo thời gian. Bạn có thể dễ dàng nhận ra liệu nó đang tăng lên, giảm xuống, hay có những thời điểm biến động.
Ví dụ, khi các đoạn thẳng liên tiếp đi lên, đó là dấu hiệu cho thấy đại lượng đang tăng trưởng. Ngược lại, nếu chúng đi xuống, đại lượng đang giảm. Một xu hướng rõ ràng cho ta biết nhiều về cách dữ liệu diễn biến theo thời gian.
Hình trên mô tả xu hướng tăng trưởng chiều cao của cây đậu trong 5 ngày.
Độ dốc của biểu đồ đoạn thẳng tiết lộ tốc độ thay đổi của dữ liệu. Khi đường thẳng càng dốc, điều đó có nghĩa là dữ liệu thay đổi rất nhanh chóng. Ngược lại, nếu nó khá bằng phẳng, có thể hiểu rằng sự thay đổi diễn ra rất chậm, hoặc gần như không có sự thay đổi.
Giả sử bạn đang theo dõi biểu đồ về tăng trưởng dân số, một đoạn thẳng dốc đứng có thể là dấu hiệu của một giai đoạn bùng nổ dân số. Trong khi đó, một đoạn thẳng bằng phẳng cho thấy giai đoạn ổn định hoặc không có nhiều biến động.
Khi bạn có nhiều hơn một bộ dữ liệu cần so sánh, biểu đồ đoạn thẳng trở thành một phương pháp rất hữu ích. Bằng cách thêm nhiều đường trên cùng một biểu đồ, bạn có thể dễ dàng so sánh xu hướng giữa các nhóm dữ liệu khác nhau.
Chẳng hạn bạn đang so sánh doanh thu của hai công ty qua các năm. Nếu một đường đi lên trong khi đường kia đi xuống, điều đó sẽ ngay lập tức cho bạn thấy sự khác biệt trong tăng trưởng của hai doanh nghiệp. Và nếu cả hai đường đều di chuyển cùng chiều nhưng với tốc độ khác nhau, bạn cũng có thể rút ra kết luận về ai đang phát triển nhanh hơn.
Lưu ý:
Để dễ dàng đọc và phân tích dữ liệu tốt hơn, có một số yếu tố quan trọng mà bạn cần nhớ:
+ Biểu đồ đang thể hiện thông tin về điều gì?
+ Đơn vị thời gian được sử dụng là gì?
+ Thời điểm nào có giá trị cao nhất?
+ Thời điểm nào có giá trị thấp nhất?
+ Giai đoạn nào số liệu tăng?
+ Giai đoạn nào số liệu giảm?
Đôi khi người ta thể hiện nhiều tập dữ liệu trên cùng một biểu đồ để dễ dàng so sánh (với mỗi đường đại diện cho một tập dữ liệu và được chú thích rõ ràng).
Ví dụ: Biểu đồ dưới đây minh họa số lượng máy tính để bàn và máy tính xách tay được bán ra tại một cửa hàng trong 6 tháng đầu năm.
Nhìn vào biểu đồ, ta có thể thấy rằng trong hai tháng đầu, số lượng máy tính để bàn bán ra nhiều hơn. Tuy nhiên, trong bốn tháng sau, doanh số máy tính để bàn giảm dần, trong khi doanh số máy tính xách tay lại tăng lên. Vì vậy, cửa hàng có thể xem xét nhập thêm máy tính xách tay cho thời gian tới.
Vẽ biểu đồ đoạn thẳng thật sự không khó, nhưng để biểu đồ vừa rõ ràng vừa chính xác thì cần sự cẩn thận. Bạn có thể tham khảo một vài bước cơ bản sau đây.
Bắt đầu bằng việc vẽ hai trục cơ bản: trục ngang và trục đứng. Trục ngang (trục x) thường biểu diễn thời gian, có thể là tháng, năm, hoặc bất kỳ đơn vị nào bạn muốn theo dõi. Còn trục đứng (trục y) sẽ đại diện cho giá trị của đại lượng mà bạn đang quan tâm, chẳng hạn như doanh thu, nhiệt độ, hay dân số.
Việc chọn đơn vị cho hai trục này là rất quan trọng. Đảm bảo rằng các khoảng cách trên cả hai trục đều đặn và dễ nhìn, bởi đây là xương sống của biểu đồ.
Sau khi trục được thiết lập, bạn đánh dấu các điểm dữ liệu. Mỗi điểm đại diện cho một giá trị tại một thời điểm cụ thể. Ví dụ, nếu bạn đang theo dõi doanh thu hàng tháng, mỗi điểm sẽ là con số doanh thu trong từng tháng.
Khi đến bước nối các điểm này lại bằng các đoạn thẳng. Những đoạn thẳng này chính là phần cốt lõi của biểu đồ đoạn thẳng, cho bạn thấy được sự thay đổi liên tục của dữ liệu qua thời gian.
Cuối cùng, bạn cần hoàn thiện biểu đồ bằng cách thêm tiêu đề, chú thích, hoặc bất kỳ ghi chú nào cần thiết để giải thích rõ hơn về dữ liệu. Tiêu đề biểu đồ nên ngắn gọn nhưng đủ để người xem hiểu dữ liệu đang nói về điều gì. Nếu bạn đang so sánh nhiều bộ số liệu, hãy đảm bảo các đường vẽ được chú thích rõ ràng để không gây nhầm lẫn.
Biểu đồ đoạn thẳng không chỉ đơn giản là một loạt các điểm nối với nhau mà còn là một cách để diễn tả đơn giản những gì đang diễn ra trong thực tế. Bạn sẽ thấy nó xuất hiện trong nhiều lĩnh vực khác nhau trong đời sống.
Kinh tế và tài chính: Đây là nơi biểu đồ đoạn thẳng được sử dụng phổ biến nhất. Từ việc theo dõi biến động giá cổ phiếu, doanh thu hàng tháng của một công ty, cho đến phân tích xu hướng tiêu dùng, các nhà kinh tế và tài chính đều dựa vào loại biểu đồ này để đưa ra quyết định.
Giáo dục: Trong lớp học, đặc biệt là các môn toán, lý, hóa, biểu đồ đoạn thẳng giúp học sinh và giáo viên dễ dàng hình dung sự thay đổi của dữ liệu theo thời gian. Nó cũng là cách hữu ích để trình bày kết quả thí nghiệm hoặc thống kê điểm số của học sinh.
Y tế: Trong y học, các biểu đồ đoạn thẳng thường được sử dụng để theo dõi tình trạng bệnh nhân, như nhịp tim, nhiệt độ, hoặc quá trình hồi phục sau phẫu thuật. Nhìn vào biểu đồ, bác sĩ có thể nhanh chóng đánh giá tình trạng sức khỏe của bệnh nhân và có những điều chỉnh kịp thời.
Bài 1: Cho biểu đồ dưới đây
a) Biểu đồ cung cấp thông tin gì?
b) Nhiệt độ tại thủ đô Hà Nội lúc 10 giờ là bao nhiêu °C?
c) Từ 12 giờ đến 20 giờ, nhiệt độ giảm bao nhiêu °C?
Hướng dẫn giải:
a) Biểu đồ cho biết thông tin về nhiệt độ tại thủ đô Hà Nội vào một ngày mùa thu.
b) Nhiệt độ tại Hà Nội lúc 10 giờ được biểu diễn trên biểu đồ là 25°C.
c) Từ 12 giờ đến 20 giờ, nhiệt độ giảm từ 34°C xuống 18°C, tức là nhiệt độ giảm 16°C (34 – 18 = 16).
Bài 2: Biểu đồ đoạn thẳng dưới đây minh họa quy mô dân số hiện tại và dự báo trong tương lai của Trung Quốc và Ấn Độ đến năm 2050.
a) Vào năm 2020, dân số của quốc gia nào lớn hơn và ước tính là bao nhiêu tỉ người?
b) Khoảng năm nào thì dân số của hai nước bằng nhau?
c) Xác định xu hướng tăng hoặc giảm của dân số từng nước trong quá khứ và dự báo tương lai.
Hướng dẫn trả lời:
a) Năm 2020, dân số của Trung Quốc lớn hơn, khoảng 1,29 tỉ người.
b) Dân số của hai nước dự kiến sẽ bằng nhau vào khoảng năm 2026.
c) Từ năm 2000 đến 2026, cả Trung Quốc và Ấn Độ đều có xu hướng gia tăng dân số, tuy nhiên, tốc độ tăng của Ấn Độ nhanh hơn. Sau năm 2026, dân số Ấn Độ dự kiến tiếp tục tăng trong khi dân số Trung Quốc sẽ giảm dần.
Bài 3: Thành tích của một vận động viên chạy cự ly 1.500 m trong quá trình luyện tập từ tuần 1 đến tuần 7 được trình bày trong bảng dưới đây:
a) Vẽ biểu đồ đoạn thẳng thể hiện số liệu trong bảng.
b) Em có nhận xét gì về thành tích chạy của vận động viên này?
Hướng dẫn giải:
a) Biểu đồ:
b) Thời gian chạy cự ly 1.500 m của vận động viên này đã giảm dần qua các tuần. Điều này cho thấy thành tích chạy của vận động viên ngày càng cải thiện và nhanh hơn.
Xem thêm:
Tóm tắt kiến thức về bất đẳng thức tam giác
Tổng hợp kiến thức về bất đẳng thức Bunhiacopxki
Như vậy, biểu đồ đoạn thẳng giúp chúng ta hiểu rõ hơn về sự biến động của các yếu tố trong cuộc sống. Chính dạng biểu đồ này đã mang lại cái nhìn rõ ràng và dễ hiểu về những gì đang diễn ra xung quanh. Qua việc tìm hiểu và ứng dụng loại biểu đồ này, trung tâm gia sư online Học là Giỏi hy vọng bạn có thể nâng cao khả năng phân tích và đưa ra quyết định thông minh hơn trong công việc sau này.
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Bí kíp chinh phục các hằng đẳng thức mở rộng
Thứ tư, 14/8/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Thể thơ song thất lục bát trong văn chương Việt Nam
Thứ ba, 28/5/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ ba, 26/11/2024 09:39 AM
Tứ giác nội tiếp là gì? Tính chất của tứ giác nội tiếp
Tứ giác nội tiếp là một trong những khái niệm quan trọng trong hình học lớp 9, đặc biệt khi tìm hiểu về các mối quan hệ giữa các điểm và đường tròn. Hãy cùng gia sư online Học là Giỏi khám phá tứ giác nội tiếp này là gì và chúng có các tính chất như thế nào nhé.
Thứ ba, 26/11/2024 04:35 AM
Khám phá lý thuyết về cung chứa góc toán 9
Khái niệm cung chứa góc ở trong toán lớp 9 đóng vai trò quan trọng khi tìm hiểu các tính chất và bài toán liên quan đến hình tròn. Cùng gia sư online Học là Giỏi đi sâu vào khái niệm và tính chất về cung chứa góc của đường tròn nhé.
Thứ hai, 25/11/2024 09:30 AM
Tìm hiểu góc có đỉnh ở bên trong đường tròn, bên ngoài đường tròn
Góc có đỉnh nằm bên trong đường tròn hoặc bên ngoài đường tròn mang đến những đặc điểm và tính chất riêng. Việc tìm hiểu về các loại góc này hỗ trợ rất nhiều trong việc giải quyết các bài toán hình học phức tạp. Hãy cùng gia sư online Học là Giỏi khám phá những khái niệm và định lý về góc có đỉnh nằm bên trong và bên ngoài đường tròn nhé.
Thứ sáu, 22/11/2024 09:18 AM
Chinh phục kiến thức về góc nội tiếp
Trong hình tròn, góc nội tiếp là một chủ đề cơ bản khi chúng có nhiều tính chất cần lưu ý trong hình học phẳng. Đây là khái niệm giúp chúng ta hiểu thêm các định lý liên quan đến đường tròn. Cùng gia sư online Học là Giỏi tìm hiểu về góc nội tiếp có gì đặc biệt và những nội dung quan trọng trong bài học này nhé.
Thứ ba, 19/11/2024 10:06 AM
Khám phá mối liên hệ giữa cung và dây
Mối liên hệ giữa cung và dây cung của đường tròn là chủ đề quan trọng trong chương trình hình học lớp 9. Dù chúng ta đã quá quen thuộc với hình ảnh những đường tròn, ít ai biết rằng cung và dây cung tạo sự liên kết mật thiết trong hình tròn. Hãy cùng gia sư online Học là Giỏi tìm hiểu rõ mối quan hệ này có gì đặc biệt nhé.
Thứ hai, 18/11/2024 10:07 AM
Tổng hợp kiến thức vị trí tương đối của hai đường tròn
Vị trí tương đối của hai đường tròn là kiến thức quan trọng để xét các tính chất của 2 đường tròn này có mối quan hệ gì với nhau. Hãy cùng gia sư online Học là Giỏi khám phá các trường hợp cơ bản về vị trí tương đối của hai đường tròn này nhé.