Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức

Tóm tắt kiến thức về bất đẳng thức tam giác

schedule.svg

Thứ ba, 28/5/2024 02:32 AM

Tác giả: Admin Hoclagioi

Bất đẳng thức tam giác là một trong những kiến thức quan trọng giúp các em học sinh lớp 8 giải được các dạng bài tập liên quan đến quan hệ giữa 3 cạnh trong một tam giác. Học là Giỏi sẽ cùng các bạn tổng hợp các kiến thức về bất đẳng thức tam giác qua bài viết dưới đây.

Mục lục [Ẩn]

Bất đẳng thức tam giác

Bất đẳng thức tam giác

Định lý bất đẳng thức tam giác là một khái niệm quan trọng trong hình học, giúp chúng ta hiểu rõ về quan hệ giữa các cạnh của tam giác. Bất đẳng thức này cho phép ta biết rằng tổng độ dài hai cạnh bất kỳ luôn lớn hơn độ dài cạnh còn lại. Đây là một công thức mà chúng ta cần nhớ để giải quyết các bài tập hình học một cách dễ dàng và chính xác.

Định lý: Tổng độ dài hai cạnh bất kỳ trong một tam giác luôn luôn lớn hơn độ dài của cạnh còn lại.

Áp dụng vào tam giác ABC, ta có các bất đẳng thức

Áp dụng vào tam giác ABC, ta có các bất đẳng thức sau:

AB + AC > BC hay b + c > a

AB + BC > AC hay c + a > b

AC + BC > AB hay b + a > c

Hệ quả bất đẳng thức trong tam giác

Hệ quả: Trong một tam giác bất kỳ, hiệu độ dài hai cạnh luôn luôn nhỏ hơn độ dài cạnh còn lại.

Nhận xét: Nếu đồng thời xét cả tổng và hiệu độ dài hai cạnh của một tam giác thì ta có thể phát biểu quan hệ giữa các cạnh của nó như sau:

Trong một tam giác, độ dài một cạnh bất kỳ lúc nào cũng nhỏ hơn tổng và lớn hơn hiệu các độ dài của hai cạnh còn lại.

Ví dụ: Trong tam giác ABC, xét mối quan hệ giữa cạnh BC và hai cạnh còn lại, ta có:

|AC – AB| < BC < AC + AB hay |b – c| < a < b + c

Các dạng bài tập về bất đẳng thức tam giác

Các dạng bài tập về bất đẳng thức tam giác

Dạng 1. Xác định ba độ dài bất kỳ có thể tạo thành một tam giác không?

Phương pháp giải

Tồn tại một tam giác có độ dài ba cạnh là a, b, c nếu |b – c| < a < b + c

Nếu từ giả thiết ta xác định được a là số lớn nhất trong ba số a, b, c đã cho thì điều kiện để tồn tại một tam giác là a < b + c

Dạng 2. Chứng minh bất đẳng thức

Phương pháp giải

Sử dụng bất đẳng thức trong tam giác và các phép biến đổi tương đương. Một số phép biến đổi thường được sử dụng là:

Cộng cùng một số và hai vế của bất đẳng thức: a > b => a+ c > b + c

Cộng vế với vế tương ứng của hai bất đẳng thức cùng chiều:

a < d

c < d

⇔ a + c < b + d.

Dạng 3. Tìm GTNN của tổng hai độ dài

Phương pháp giải

Với ba điểm M, B, C bất kì ta có: BM + MC ≥ BC. Dấu “=” xảy ra khi và chỉ khi điểm M nằm trên đoạn thẳng BC.

Như vậy, nếu độ dài đoạn BC không đổi thì tổng BM + MC có giá trị nhỏ nhất bằng độ dài đoạn BC khi và chỉ khi M thuộc đoạn BC.

Dạng 4. Bài toán thực tế

Ví dụ: Một khu dân cư và một trạm biến áp được xây dựng tại hai địa điểm A và B cách xa nhau ở hai bờ sông. Hãy tìm một địa điểm C trên bờ sông gần khu dân cư để xây dựng một cột điện đưa điện từ trạm biến áp về khu dân cư, sao cho độ dài đường dây điện cần dùng là ngắn nhất.

Một khu dân cư và một trạm biến áp được xây dựng tại hai địa điểm A và B cách xa nhau ở hai bờ sông.

Lời giải

Để độ dài đường dây là ngắn nhất thì C nằm trên đoạn thẳng AB, tức là: AC + BC = AB

Vì trong trường hợp điểm C nằm ngoài đoạn thẳng AB thì ba điểm A, B, C sẽ tạo thành một tam giác. Khi đó, theo định lý tổng hai cạnh trong tam giác ta có:

AC + BC > AB

Do đó: AC + BC ngắn nhất khi C nằm giữa A và B.

Vậy vị trí đặt cây cột mắc dây điện từ trạm về cho khu dân cư sao cho độ dài đường dây ngắn nhất chính là điểm C nằm giữa A và B.

Xem thêm:

Tổng hợp lí thuyết về bất đẳng thức Cosi

Tổng hợp kiến thức về bất đẳng thức Bunhiacopxki

Kết luận

Trên đây là tóm tắt kiến thức về bất đẳng thức tam giác. Học là Giỏi mong rằng, nó sẽ gợi ý cho các bạn cách hệ thống kiến thức sáng tạo và đẹp theo cách của riêng mình, biến các công thức khô khan trở nên sinh động hơn, từ đó giúp chúng mình nhớ và áp dụng giải được các bài toán tính đạo hàm trong chương trình toán phổ thông nhé.

 

Chủ đề:

Đăng ký học thử ngay hôm nay

Để con học sớm - Ôn sâu và nhận ưu đãi học phí!

Bài viết liên quan

Tia là gì? Khái niệm cơ bản và tính chất trong hình học
schedule

Thứ năm, 28/8/2025 04:23 AM

Tia là gì? Khái niệm cơ bản và tính chất trong hình học

Trong hình học, một trong những khái niệm mà học sinh cần nắm vững chính là tia. Nhiều bạn thường đặt câu hỏi: tia là gì và cách phân biệt nó với đoạn thẳng hay đường thẳng như thế nào? Học là Giỏi sẽ giúp bạn tìm hiểu chi tiết về tia là gì, các tính chất quan trọng và những bài tập minh họa dễ hiểu qua bài viết dưới đây nhé.

Đoạn thẳng là gì? Cách tính độ dài đoạn thẳng
schedule

Thứ tư, 27/8/2025 02:03 PM

Đoạn thẳng là gì? Cách tính độ dài đoạn thẳng

Trong chương trình toán học cơ bản, từ những bài toán hình học đầu tiên, học sinh đã được làm quen với đoạn thẳng để nghiên cứu đường thẳng, góc, tam giác hay các hình đa giác phức tạp hơn. Học là Giỏi sẽ giúp bạn hiểu rõ khái niệm, tính chất và các dạng bài tập cũng như nắm bắt được cách tính độ dài đoạn thẳng nhé.

Đường thẳng và những kiến thức nền tảng cần ghi nhớ
schedule

Thứ tư, 27/8/2025 08:20 AM

Đường thẳng và những kiến thức nền tảng cần ghi nhớ

Trong hình học, đường thẳng là một trong những khái niệm cơ bản và xuất hiện nhiều trong các đề thi và bài kiểm tra. Học là Giỏi sẽ giúp bạn hiểu rõ hơn về đặc điểm, ứng dụng và cách giải bài tập liên quan đến đường thẳng thông qua bài viết này nhé.

Hướng dẫn học bảng nhân 6 hiệu quả tại nhà
schedule

Thứ tư, 27/8/2025 03:12 AM

Hướng dẫn học bảng nhân 6 hiệu quả tại nhà

Bảng nhân 6 là một phần không thể thiếu trong bảng cửu chương, thường xuất hiện trong nhiều dạng bài tập và tình huống thực tế. Học là Giỏi sẽ giúp bạn hiểu rõ quy luật, ghi nhớ dễ dàng và thực hành hiệu quả bảng nhân 6.

Tổng hợp công thức tính phương sai và độ lệch chuẩn dễ nhớ
schedule

Thứ ba, 26/8/2025 09:12 AM

Tổng hợp công thức tính phương sai và độ lệch chuẩn dễ nhớ

Trong thống kê và xác suất, cách dữ liệu phân tán quanh giá trị trung bình có ý nghĩa trong học tập cũng như thực tiễn. Hai công thức này thường được sử dụng để đo lường mức độ biến động đó chính là phương sai và độ lệch chuẩn. Học là Giỏi sẽ giúp bạn nắm vững kiến thức cơ bản về phương sai và độ lệch chuẩn, kèm theo bài tập minh họa dễ hiểu.

Tập hợp con là gì? Các trường hợp đặc biệt của tập hợp con
schedule

Thứ hai, 25/8/2025 09:45 AM

Tập hợp con là gì? Các trường hợp đặc biệt của tập hợp con

Khái niệm tập hợp hỗ trợ học sinh làm quen với cách mô tả và phân loại đối tượng trong môn toán cấp 3. Trong đó, tập hợp con là gì luôn là câu hỏi thường gặp bởi đây là kiến thức cơ bản nhưng lại có ứng dụng trong nhiều dạng bài tập. Học là Giỏi sẽ giúp bạn nắm vững khái niệm, tính chất và cách vận dụng tập hợp con một cách rõ ràng, dễ hiểu.

message.svg zalo.png