Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Thứ ba, 28/5/2024 02:32 AM
Tác giả: Admin Hoclagioi
Bất đẳng thức tam giác là một trong những kiến thức quan trọng giúp các em học sinh lớp 8 giải được các dạng bài tập liên quan đến quan hệ giữa 3 cạnh trong một tam giác. Học là Giỏi sẽ cùng các bạn tổng hợp các kiến thức về bất đẳng thức tam giác qua bài viết dưới đây.
Mục lục [Ẩn]
Định lý bất đẳng thức tam giác là một khái niệm quan trọng trong hình học, giúp chúng ta hiểu rõ về quan hệ giữa các cạnh của tam giác. Bất đẳng thức này cho phép ta biết rằng tổng độ dài hai cạnh bất kỳ luôn lớn hơn độ dài cạnh còn lại. Đây là một công thức mà chúng ta cần nhớ để giải quyết các bài tập hình học một cách dễ dàng và chính xác.
Định lý: Tổng độ dài hai cạnh bất kỳ trong một tam giác luôn luôn lớn hơn độ dài của cạnh còn lại.
Áp dụng vào tam giác ABC, ta có các bất đẳng thức sau:
AB + AC > BC hay b + c > a
AB + BC > AC hay c + a > b
AC + BC > AB hay b + a > c
Hệ quả: Trong một tam giác bất kỳ, hiệu độ dài hai cạnh luôn luôn nhỏ hơn độ dài cạnh còn lại.
Nhận xét: Nếu đồng thời xét cả tổng và hiệu độ dài hai cạnh của một tam giác thì ta có thể phát biểu quan hệ giữa các cạnh của nó như sau:
Trong một tam giác, độ dài một cạnh bất kỳ lúc nào cũng nhỏ hơn tổng và lớn hơn hiệu các độ dài của hai cạnh còn lại.
Ví dụ: Trong tam giác ABC, xét mối quan hệ giữa cạnh BC và hai cạnh còn lại, ta có:
|AC – AB| < BC < AC + AB hay |b – c| < a < b + c
Phương pháp giải
Tồn tại một tam giác có độ dài ba cạnh là a, b, c nếu |b – c| < a < b + c
Nếu từ giả thiết ta xác định được a là số lớn nhất trong ba số a, b, c đã cho thì điều kiện để tồn tại một tam giác là a < b + c
Phương pháp giải
Sử dụng bất đẳng thức trong tam giác và các phép biến đổi tương đương. Một số phép biến đổi thường được sử dụng là:
Cộng cùng một số và hai vế của bất đẳng thức: a > b => a+ c > b + c
Cộng vế với vế tương ứng của hai bất đẳng thức cùng chiều:
a < d
c < d
⇔ a + c < b + d.
Phương pháp giải
Với ba điểm M, B, C bất kì ta có: BM + MC ≥ BC. Dấu “=” xảy ra khi và chỉ khi điểm M nằm trên đoạn thẳng BC.
Như vậy, nếu độ dài đoạn BC không đổi thì tổng BM + MC có giá trị nhỏ nhất bằng độ dài đoạn BC khi và chỉ khi M thuộc đoạn BC.
Ví dụ: Một khu dân cư và một trạm biến áp được xây dựng tại hai địa điểm A và B cách xa nhau ở hai bờ sông. Hãy tìm một địa điểm C trên bờ sông gần khu dân cư để xây dựng một cột điện đưa điện từ trạm biến áp về khu dân cư, sao cho độ dài đường dây điện cần dùng là ngắn nhất.
Lời giải
Để độ dài đường dây là ngắn nhất thì C nằm trên đoạn thẳng AB, tức là: AC + BC = AB
Vì trong trường hợp điểm C nằm ngoài đoạn thẳng AB thì ba điểm A, B, C sẽ tạo thành một tam giác. Khi đó, theo định lý tổng hai cạnh trong tam giác ta có:
AC + BC > AB
Do đó: AC + BC ngắn nhất khi C nằm giữa A và B.
Vậy vị trí đặt cây cột mắc dây điện từ trạm về cho khu dân cư sao cho độ dài đường dây ngắn nhất chính là điểm C nằm giữa A và B.
Xem thêm:
Tổng hợp lí thuyết về bất đẳng thức Cosi
Tổng hợp kiến thức về bất đẳng thức Bunhiacopxki
Trên đây là tóm tắt kiến thức về bất đẳng thức tam giác. Học là Giỏi mong rằng, nó sẽ gợi ý cho các bạn cách hệ thống kiến thức sáng tạo và đẹp theo cách của riêng mình, biến các công thức khô khan trở nên sinh động hơn, từ đó giúp chúng mình nhớ và áp dụng giải được các bài toán tính đạo hàm trong chương trình toán phổ thông nhé.
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Bí kíp chinh phục các hằng đẳng thức mở rộng
Thứ tư, 14/8/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Thể thơ song thất lục bát trong văn chương Việt Nam
Thứ ba, 28/5/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ ba, 26/11/2024 09:39 AM
Tứ giác nội tiếp là gì? Tính chất của tứ giác nội tiếp
Tứ giác nội tiếp là một trong những khái niệm quan trọng trong hình học lớp 9, đặc biệt khi tìm hiểu về các mối quan hệ giữa các điểm và đường tròn. Hãy cùng gia sư online Học là Giỏi khám phá tứ giác nội tiếp này là gì và chúng có các tính chất như thế nào nhé.
Thứ ba, 26/11/2024 04:35 AM
Khám phá lý thuyết về cung chứa góc toán 9
Khái niệm cung chứa góc ở trong toán lớp 9 đóng vai trò quan trọng khi tìm hiểu các tính chất và bài toán liên quan đến hình tròn. Cùng gia sư online Học là Giỏi đi sâu vào khái niệm và tính chất về cung chứa góc của đường tròn nhé.
Thứ hai, 25/11/2024 09:30 AM
Tìm hiểu góc có đỉnh ở bên trong đường tròn, bên ngoài đường tròn
Góc có đỉnh nằm bên trong đường tròn hoặc bên ngoài đường tròn mang đến những đặc điểm và tính chất riêng. Việc tìm hiểu về các loại góc này hỗ trợ rất nhiều trong việc giải quyết các bài toán hình học phức tạp. Hãy cùng gia sư online Học là Giỏi khám phá những khái niệm và định lý về góc có đỉnh nằm bên trong và bên ngoài đường tròn nhé.
Thứ sáu, 22/11/2024 09:18 AM
Chinh phục kiến thức về góc nội tiếp
Trong hình tròn, góc nội tiếp là một chủ đề cơ bản khi chúng có nhiều tính chất cần lưu ý trong hình học phẳng. Đây là khái niệm giúp chúng ta hiểu thêm các định lý liên quan đến đường tròn. Cùng gia sư online Học là Giỏi tìm hiểu về góc nội tiếp có gì đặc biệt và những nội dung quan trọng trong bài học này nhé.
Thứ ba, 19/11/2024 10:06 AM
Khám phá mối liên hệ giữa cung và dây
Mối liên hệ giữa cung và dây cung của đường tròn là chủ đề quan trọng trong chương trình hình học lớp 9. Dù chúng ta đã quá quen thuộc với hình ảnh những đường tròn, ít ai biết rằng cung và dây cung tạo sự liên kết mật thiết trong hình tròn. Hãy cùng gia sư online Học là Giỏi tìm hiểu rõ mối quan hệ này có gì đặc biệt nhé.
Thứ hai, 18/11/2024 10:07 AM
Tổng hợp kiến thức vị trí tương đối của hai đường tròn
Vị trí tương đối của hai đường tròn là kiến thức quan trọng để xét các tính chất của 2 đường tròn này có mối quan hệ gì với nhau. Hãy cùng gia sư online Học là Giỏi khám phá các trường hợp cơ bản về vị trí tương đối của hai đường tròn này nhé.