Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức

Tổng hợp các công thức lượng giác thường gặp

schedule.svg

Thứ hai, 15/4/2024 08:52 AM

Tác giả: Admin Hoclagioi

Công thức lượng giác là bộ công cụ mạnh mẽ cho việc phân tích và tính toán các mối quan hệ giữa các góc và đoạn thẳng trong tam giác và các hình học khác. Việc ghi nhớ và áp dụng giải các bài toán lượng giác của các bạn học sinh thường gặp khó khăn.

Mục lục [Ẩn]

Công thức lượng giác cơ bản

công thức lượng giác thường gặp

$\sin ^2 \alpha+\cos ^2 \alpha=1$ với mọi $\alpha$

$\tan \alpha \cdot \cot \alpha=1$ với $\cos \alpha \neq 0, \sin \alpha \neq 0$

$1+\tan ^2 \alpha=\frac{1}{\cos ^2 \alpha}$ với $\cos \alpha \neq 0$

$1+\cot ^2 \alpha=\frac{1}{\sin ^2 \alpha}$ với $\sin \alpha \neq 0$

- Giá  trị lượng giác của các góc có liên quan đặc biệt

Hai góc đối nhau  $\alpha$ và $-\alpha$

$\begin{aligned} & \sin (-\alpha)=-\sin \alpha \\ & \cos (-\alpha)=\cos \alpha \\ & \tan (-\alpha)=-\tan \alpha \\ & \cot (-\alpha)=-\cot \alpha\end{aligned}$.

Hai góc bù nhau $\alpha$ và $\pi-\alpha$

$\begin{aligned}& \sin (\pi-\alpha)=\sin \alpha \\& \cos (\pi-\alpha)=-\cos \alpha \\& \tan (\pi-\alpha)=-\tan \alpha \\& \cot (\pi-\alpha)=-\cot \alpha\end{aligned}$.

Hai góc hơn kém nhau $\pi$ ( $\alpha$ và $\alpha+\pi)$

$\begin{aligned}& \sin (\alpha+\pi)=-\sin \alpha \\& \cos (\alpha+\pi)=-\cos \alpha \\& \tan (\alpha+\pi)=\tan \alpha \\& \cot (\alpha+\pi)=\cot \alpha\end{aligned}$

Hai góc phụ nhau ( $\alpha$ và $\frac{\pi}{2}-\alpha$)

$\begin{aligned}& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \alpha \\& \cos \left(\frac{\pi}{2}-\alpha\right)=\sin \alpha \\& \tan \left(\frac{\pi}{2}-\alpha\right)=\cot \alpha \\& \cot \left(\frac{\pi}{2}-\alpha\right)=\tan \alpha\end{aligned}$

Các phép biến đổi lượng giác

Công thức cộng

$\begin{aligned} & \sin (a+b)=\sin a \cdot \cos b+\cos a \cdot \sin b \\ & \sin (a-b)=\sin a \cdot \cos b-\cos a \cdot \sin b \\ & \cos (a+b)=\cos a \cdot \cos b-\sin a \cdot \sin b \\ & \cos (a-b)=\cos a \cdot \cos b+\sin a \cdot \sin b \\ & \tan (a+b)=\frac{\tan a+\tan b}{1-\tan a \tan b} \\ & \tan (a-b)=\frac{\tan a-\tan b}{1+\tan a \tan b}\end{aligned}$

(khi các biểu thức đều có nghĩa)

Công thức nhân đôi

$\begin{aligned}& \sin 2 a=2 \sin a \cos a \\& \cos 2 a=\cos ^2 \alpha-\sin ^2 \alpha \\&\tan 2 a=\frac{2 \tan a}{1-\tan ^2 a}\end{aligned}$

Công thức lượng giác nhân ba

$\begin{aligned}& \sin 3 x=3 \sin x-4 \sin ^3 x \\& \cos 3 x=4 \cos ^3 x-3 \cos x \\& \tan 3 x=\frac{3 \tan x-\tan ^3 x}{1-3 \tan ^2 x}\end{aligned}$.

Công thức lượng giác nhân bốn

$\begin{aligned}& \sin 4 x=4 \cdot \sin x \cdot \cos ^3 x-4 \cdot \cos x \cdot \sin ^3 x \\& \cos 4 x=8 \cdot \cos ^4 x-8 \cdot \cos ^2 x+1\end{aligned}$

hoặc ta có thể sử dụng $\cos 4 x=8 \cdot \sin ^4 x-8 \cdot \sin ^2 x+1$

Công thức hạ bậc

$\begin{aligned}& \cos ^2 a=\frac{1+\cos 2 a}{2} \\& \sin ^2 a=\frac{1-\cos 2 a}{2}\end{aligned}$

$\begin{aligned} & \sin ^3 x=\frac{3 \sin x-\sin 3 x}{4} \\ & \cos ^3 x=\frac{3 \cos x+\cos 3 x}{4}\end{aligned}$

Công thức biến đổi tích thành tổng

$\begin{aligned}& \cos a \cos b=\frac{1}{2}[\cos (a+b)+\cos (a-b)] \\& \sin a \sin b=-\frac{1}{2}[\cos (a+b)-\cos (a-b)] \\& \sin a \cos b=\frac{1}{2}[\sin (a+b)+\sin (a-b)]\end{aligned}$.

Công thức biến đổi tổng thành tích

$\begin{aligned}& \cos a+\cos b=2 \cos \frac{a+b}{2} \cos \frac{a-b}{2} \\& \cos a-\cos b=-2 \sin \frac{a+b}{2} \sin \frac{a-b}{2} \\& \sin a+\sin b=2 \sin \frac{a+b}{2} \cos \frac{a-b}{2} \\& \sin a-\sin b=2 \cos \frac{a+b}{2} \sin \frac{a-b}{2}\end{aligned}$

$\begin{aligned} & \tan a+\tan b=\frac{\sin (a+b)}{\cos a \cdot \cos b} \\ & \tan a-\tan b=\frac{\sin (a-b)}{\cos a \cdot \cos b} \\ & \sin a+\cos a=\sqrt{2} \sin \left(a+\frac{\pi}{4}\right)=\sqrt{2} \cos \left(a-\frac{\pi}{4}\right) \\ & \sin a-\cos a=\sqrt{2} \sin \left(a-\frac{\pi}{4}\right)=-\sqrt{2} \cos \left(a+\frac{\pi}{4}\right) \\ & \tan a+\cot a=\frac{2}{\sin 2 a} \\ & \cot a-\tan a=2 \cot 2 a\end{aligned}$

Một số công thức lượng giác nâng cao khác

$\begin{aligned} & \sin ^4 a+\cos ^4 a=1-\frac{1}{2} \sin ^2 2 a=\frac{1}{4} \cos 4 a+\frac{3}{4} \\ & \sin ^6 a+\cos ^6 a=1-\frac{3}{4} \sin ^2 2 a=\frac{3}{8} \cos 4 a+\frac{5}{8}\end{aligned}$

Ở một số bài toán để giải được nó ta cần phải sử dụng phương pháp đặt ẩn phụ, nếu ta đặt $t=\frac{\tan x}{2}$. Lúc này ta có thể biểu diễn các công thức lượng giác khác theo t như sau:

$\begin{aligned}& \sin x=\frac{2 t}{1+t^2} \\& \cos x=\frac{1-t^2}{1+t^2} \\& \tan x=\frac{2 t}{1-t^2} \\& \cot x=\frac{1-t^2}{2 t}\end{aligned}$.

Bảng xét dấu của giá trị lượng giác

Dưới đây là bảng xét dấu của các giá trị lượng giác sin, cos, tan, cot bạn nên học thuộc để thuận tiện trong quá trình giải bài tập toán: 

Góc phần tư sốIIIIIIIV
sin (x)++
cos (x)++
tan (x)++
cot (x)++

Bảng giá trị lượng giác góc đặc biệt

Góc (α)

Radian

sin⁡α

cos⁡α

tan⁡α

cot⁡α

0o

0

0

1

0

Không xác định

300

π6

12

32

13

3

45o

π4

22

22

1

1

60o

π3

32

12

3

13

90o

π2

1

0

Không xác định

0

120o

2π3

32

-12

-3

-13

135o

3π4

22

-22

−1

−1

150o

5π6

12

-32

-13

-3

180o

π

0

−1

0

Không xác định

210o

7π6

-12

-32

13

3

225o

5π4

-22

-22

1

1

240o

4π3

-32

-12

3

13

270o

3π2

−1

0

Không xác định

0

300o

5π3

-32

12

-3

-13

315o

7π4

-22

22

−1

−1

330o

11π6

-12

32

-13

-3

360o

2π

0

1

0

Không xác định

Chú ý:

Giá trị của tanα\tan \alphatanα và cotα\cot \alphacotα không xác định tại các góc mà cosα=0\cos \alpha = 0 hoặc sinα=0\sin \alpha = 0.

Đối với các góc khác không trong bảng, ta có thể tính dựa trên các công thức lượng giác cơ bản.

Trên đây là toàn bộ công thức lượng giác quan trọng mà các em cần nắm vững. Học là Giỏi mong rằng, với sự kiên nhẫn, kiên trì và không ngừng luyện tập, các em sẽ làm tốt được các bài toán lượng giác nhé. Chúc các em thành công!

Chủ đề:

Đăng ký học thử ngay hôm nay

Để con học sớm - Ôn sâu và nhận ưu đãi học phí!

Bài viết liên quan

Tứ giác nội tiếp là gì? Tính chất của tứ giác nội tiếp
schedule

Thứ ba, 26/11/2024 09:39 AM

Tứ giác nội tiếp là gì? Tính chất của tứ giác nội tiếp

Tứ giác nội tiếp là một trong những khái niệm quan trọng trong hình học lớp 9, đặc biệt khi tìm hiểu về các mối quan hệ giữa các điểm và đường tròn. Hãy cùng gia sư online Học là Giỏi khám phá tứ giác nội tiếp này là gì và chúng có các tính chất như thế nào nhé.

Khám phá lý thuyết về cung chứa góc toán 9
schedule

Thứ ba, 26/11/2024 04:35 AM

Khám phá lý thuyết về cung chứa góc toán 9

Khái niệm cung chứa góc ở trong toán lớp 9 đóng vai trò quan trọng khi tìm hiểu các tính chất và bài toán liên quan đến hình tròn. Cùng gia sư online Học là Giỏi đi sâu vào khái niệm và tính chất về cung chứa góc của đường tròn nhé.

Tìm hiểu góc có đỉnh ở bên trong đường tròn, bên ngoài đường tròn
schedule

Thứ hai, 25/11/2024 09:30 AM

Tìm hiểu góc có đỉnh ở bên trong đường tròn, bên ngoài đường tròn

Góc có đỉnh nằm bên trong đường tròn hoặc bên ngoài đường tròn mang đến những đặc điểm và tính chất riêng. Việc tìm hiểu về các loại góc này hỗ trợ rất nhiều trong việc giải quyết các bài toán hình học phức tạp. Hãy cùng gia sư online Học là Giỏi khám phá những khái niệm và định lý về góc có đỉnh nằm bên trong và bên ngoài đường tròn nhé.

Chinh phục kiến thức về góc nội tiếp
schedule

Thứ sáu, 22/11/2024 09:18 AM

Chinh phục kiến thức về góc nội tiếp

Trong hình tròn, góc nội tiếp là một chủ đề cơ bản khi chúng có nhiều tính chất cần lưu ý trong hình học phẳng. Đây là khái niệm giúp chúng ta hiểu thêm các định lý liên quan đến đường tròn. Cùng gia sư online Học là Giỏi tìm hiểu về góc nội tiếp có gì đặc biệt và những nội dung quan trọng trong bài học này nhé.

Khám phá mối liên hệ giữa cung và dây
schedule

Thứ ba, 19/11/2024 10:06 AM

Khám phá mối liên hệ giữa cung và dây

Mối liên hệ giữa cung và dây cung của đường tròn là chủ đề quan trọng trong chương trình hình học lớp 9. Dù chúng ta đã quá quen thuộc với hình ảnh những đường tròn, ít ai biết rằng cung và dây cung tạo sự liên kết mật thiết trong hình tròn. Hãy cùng gia sư online Học là Giỏi tìm hiểu rõ mối quan hệ này có gì đặc biệt nhé.

Tổng hợp kiến thức vị trí tương đối của hai đường tròn
schedule

Thứ hai, 18/11/2024 10:07 AM

Tổng hợp kiến thức vị trí tương đối của hai đường tròn

Vị trí tương đối của hai đường tròn là kiến thức quan trọng để xét các tính chất của 2 đường tròn này có mối quan hệ gì với nhau. Hãy cùng gia sư online Học là Giỏi khám phá các trường hợp cơ bản về vị trí tương đối của hai đường tròn này nhé.

message.svg zalo.png