Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Công thức lượng giác là bộ công cụ mạnh mẽ cho việc phân tích và tính toán các mối quan hệ giữa các góc và đoạn thẳng trong tam giác và các hình học khác. Việc ghi nhớ và áp dụng giải các bài toán lượng giác của các bạn học sinh thường gặp khó khăn.
Mục lục [Ẩn]
$\sin ^2 \alpha+\cos ^2 \alpha=1$ với mọi $\alpha$
$\tan \alpha \cdot \cot \alpha=1$ với $\cos \alpha \neq 0, \sin \alpha \neq 0$
$1+\tan ^2 \alpha=\frac{1}{\cos ^2 \alpha}$ với $\cos \alpha \neq 0$
$1+\cot ^2 \alpha=\frac{1}{\sin ^2 \alpha}$ với $\sin \alpha \neq 0$
- Giá trị lượng giác của các góc có liên quan đặc biệt
Hai góc đối nhau $\alpha$ và $-\alpha$
$\begin{aligned} & \sin (-\alpha)=-\sin \alpha \\ & \cos (-\alpha)=\cos \alpha \\ & \tan (-\alpha)=-\tan \alpha \\ & \cot (-\alpha)=-\cot \alpha\end{aligned}$.
Hai góc bù nhau $\alpha$ và $\pi-\alpha$
$\begin{aligned}& \sin (\pi-\alpha)=\sin \alpha \\& \cos (\pi-\alpha)=-\cos \alpha \\& \tan (\pi-\alpha)=-\tan \alpha \\& \cot (\pi-\alpha)=-\cot \alpha\end{aligned}$.
Hai góc hơn kém nhau $\pi$ ( $\alpha$ và $\alpha+\pi)$
$\begin{aligned}& \sin (\alpha+\pi)=-\sin \alpha \\& \cos (\alpha+\pi)=-\cos \alpha \\& \tan (\alpha+\pi)=\tan \alpha \\& \cot (\alpha+\pi)=\cot \alpha\end{aligned}$
Hai góc phụ nhau ( $\alpha$ và $\frac{\pi}{2}-\alpha$)
$\begin{aligned}& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \alpha \\& \cos \left(\frac{\pi}{2}-\alpha\right)=\sin \alpha \\& \tan \left(\frac{\pi}{2}-\alpha\right)=\cot \alpha \\& \cot \left(\frac{\pi}{2}-\alpha\right)=\tan \alpha\end{aligned}$
Công thức cộng
$\begin{aligned} & \sin (a+b)=\sin a \cdot \cos b+\cos a \cdot \sin b \\ & \sin (a-b)=\sin a \cdot \cos b-\cos a \cdot \sin b \\ & \cos (a+b)=\cos a \cdot \cos b-\sin a \cdot \sin b \\ & \cos (a-b)=\cos a \cdot \cos b+\sin a \cdot \sin b \\ & \tan (a+b)=\frac{\tan a+\tan b}{1-\tan a \tan b} \\ & \tan (a-b)=\frac{\tan a-\tan b}{1+\tan a \tan b}\end{aligned}$
(khi các biểu thức đều có nghĩa)
Công thức nhân đôi
$\begin{aligned}& \sin 2 a=2 \sin a \cos a \\& \cos 2 a=\cos ^2 \alpha-\sin ^2 \alpha \\&\tan 2 a=\frac{2 \tan a}{1-\tan ^2 a}\end{aligned}$
Công thức lượng giác nhân ba
$\begin{aligned}& \sin 3 x=3 \sin x-4 \sin ^3 x \\& \cos 3 x=4 \cos ^3 x-3 \cos x \\& \tan 3 x=\frac{3 \tan x-\tan ^3 x}{1-3 \tan ^2 x}\end{aligned}$.
Công thức lượng giác nhân bốn
$\begin{aligned}& \sin 4 x=4 \cdot \sin x \cdot \cos ^3 x-4 \cdot \cos x \cdot \sin ^3 x \\& \cos 4 x=8 \cdot \cos ^4 x-8 \cdot \cos ^2 x+1\end{aligned}$
hoặc ta có thể sử dụng $\cos 4 x=8 \cdot \sin ^4 x-8 \cdot \sin ^2 x+1$
Công thức hạ bậc
$\begin{aligned}& \cos ^2 a=\frac{1+\cos 2 a}{2} \\& \sin ^2 a=\frac{1-\cos 2 a}{2}\end{aligned}$
$\begin{aligned} & \sin ^3 x=\frac{3 \sin x-\sin 3 x}{4} \\ & \cos ^3 x=\frac{3 \cos x+\cos 3 x}{4}\end{aligned}$
Công thức biến đổi tích thành tổng
$\begin{aligned}& \cos a \cos b=\frac{1}{2}[\cos (a+b)+\cos (a-b)] \\& \sin a \sin b=-\frac{1}{2}[\cos (a+b)-\cos (a-b)] \\& \sin a \cos b=\frac{1}{2}[\sin (a+b)+\sin (a-b)]\end{aligned}$.
Công thức biến đổi tổng thành tích
$\begin{aligned}& \cos a+\cos b=2 \cos \frac{a+b}{2} \cos \frac{a-b}{2} \\& \cos a-\cos b=-2 \sin \frac{a+b}{2} \sin \frac{a-b}{2} \\& \sin a+\sin b=2 \sin \frac{a+b}{2} \cos \frac{a-b}{2} \\& \sin a-\sin b=2 \cos \frac{a+b}{2} \sin \frac{a-b}{2}\end{aligned}$
$\begin{aligned} & \tan a+\tan b=\frac{\sin (a+b)}{\cos a \cdot \cos b} \\ & \tan a-\tan b=\frac{\sin (a-b)}{\cos a \cdot \cos b} \\ & \sin a+\cos a=\sqrt{2} \sin \left(a+\frac{\pi}{4}\right)=\sqrt{2} \cos \left(a-\frac{\pi}{4}\right) \\ & \sin a-\cos a=\sqrt{2} \sin \left(a-\frac{\pi}{4}\right)=-\sqrt{2} \cos \left(a+\frac{\pi}{4}\right) \\ & \tan a+\cot a=\frac{2}{\sin 2 a} \\ & \cot a-\tan a=2 \cot 2 a\end{aligned}$
Một số công thức lượng giác nâng cao khác
$\begin{aligned} & \sin ^4 a+\cos ^4 a=1-\frac{1}{2} \sin ^2 2 a=\frac{1}{4} \cos 4 a+\frac{3}{4} \\ & \sin ^6 a+\cos ^6 a=1-\frac{3}{4} \sin ^2 2 a=\frac{3}{8} \cos 4 a+\frac{5}{8}\end{aligned}$
Ở một số bài toán để giải được nó ta cần phải sử dụng phương pháp đặt ẩn phụ, nếu ta đặt $t=\frac{\tan x}{2}$. Lúc này ta có thể biểu diễn các công thức lượng giác khác theo t như sau:
$\begin{aligned}& \sin x=\frac{2 t}{1+t^2} \\& \cos x=\frac{1-t^2}{1+t^2} \\& \tan x=\frac{2 t}{1-t^2} \\& \cot x=\frac{1-t^2}{2 t}\end{aligned}$.
Dưới đây là bảng xét dấu của các giá trị lượng giác sin, cos, tan, cot bạn nên học thuộc để thuận tiện trong quá trình giải bài tập toán:
Góc phần tư số | I | II | III | IV |
sin (x) | + | + | – | – |
cos (x) | + | – | – | + |
tan (x) | + | – | + | – |
cot (x) | + | – | + | – |
Góc (α) | Radian | sinα | cosα | tanα | cotα |
0 | 0 | 1 | 0 | Không xác định | |
1 | 1 | ||||
1 | 0 | Không xác định | 0 | ||
−1 | −1 | ||||
0 | −1 | 0 | Không xác định | ||
1 | 1 | ||||
−1 | 0 | Không xác định | 0 | ||
−1 | −1 | ||||
0 | 1 | 0 | Không xác định |
Chú ý:
Giá trị của tanα và cotα không xác định tại các góc mà hoặc .
Đối với các góc khác không trong bảng, ta có thể tính dựa trên các công thức lượng giác cơ bản.
Trên đây là toàn bộ công thức lượng giác quan trọng mà các em cần nắm vững. Học là Giỏi mong rằng, với sự kiên nhẫn, kiên trì và không ngừng luyện tập, các em sẽ làm tốt được các bài toán lượng giác nhé. Chúc các em thành công!
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
Tổng hợp đáp án, đề thi tốt nghiệp THPT 2025-2026
Thứ sáu, 13/6/2025Tổng hợp đề thi & đáp án vào lớp 10 của 63 tỉnh thành 2025-2026
Thứ hai, 19/5/2025Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ ba, 17/6/2025 04:12 AM
Đáp án, đề thi môn Toán vào 10 tỉnh Lâm Đồng 2025
Học là Giỏi tổng hợp trọn bộ đáp án, đề thi môn Toán vào 10 tỉnh Lâm Đồng 2025 nhằm hỗ trợ học sinh thuận tiện trong việc so sánh kết quả và tự đánh giá năng lực làm bài.
Thứ sáu, 13/6/2025 07:11 AM
Đáp án, đề thi môn Toán THPT Quốc gia 2025
Bài viết cập nhật nhanh chóng và chính xác đề thi cùng đáp án giúp thí sinh so sánh kết quả và định hướng các nguyện vọng phù hợp. Học là Giỏi cung cấp đề thi chính thức môn Toán THPT Quốc gia 2025 được thi vào chiều ngày 26/06/2025 kèm đáp án chi tiết từng mã đề, hỗ trợ thí sinh tra cứu dễ dàng và tiện lợi.
Thứ sáu, 6/6/2025 09:55 AM
Đáp án, đề thi môn Toán vào 10 tỉnh Đắk Nông 2025
Học là Giỏi sẽ cung cấp đáp án, đề thi môn Toán vào 10 tỉnh Đắk Nông 2025 giúp các em dễ dàng đối chiếu bài làm, từ đó ước lượng điểm số một cách chính xác.
Thứ sáu, 6/6/2025 09:20 AM
Đáp án, đề thi môn Toán vào 10 tỉnh Trà Vinh 2025
Học là Giỏi cung cấp đầy đủ đáp án, đề thi môn Toán vào 10 tỉnh Trà Vinh 2025 nhằm hỗ trợ học sinh tra cứu, đánh giá điểm bài làm của bản thân.
Thứ sáu, 6/6/2025 09:13 AM
Đáp án, đề thi môn Toán vào 10 tỉnh Long An 2025
Học là Giỏi sẽ chia sẻ đáp án, đề thi môn Toán vào 10 tỉnh Long An 2025 được tổng hợp chi tiết, hỗ trợ học sinh đối chiếu kết quả và phụ huynh theo dõi tình hình thi cử chính xác.
Thứ sáu, 6/6/2025 09:05 AM
Đáp án, đề thi môn Toán vào 10 tỉnh Hà Nam 2025
Để hỗ trợ các em học sinh kiểm tra lại phần làm bài, Học là Giỏi sẽ cập nhật đầy đủ đáp án, đề thi môn Toán vào 10 tỉnh Hà Nam 2025 một cách nhanh chóng và chính xác nhất.