Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Thứ hai, 15/4/2024 08:52 AM
Tác giả: Admin Hoclagioi
Công thức lượng giác là bộ công cụ mạnh mẽ cho việc phân tích và tính toán các mối quan hệ giữa các góc và đoạn thẳng trong tam giác và các hình học khác. Việc ghi nhớ và áp dụng giải các bài toán lượng giác của các bạn học sinh thường gặp khó khăn.
Mục lục [Ẩn]
$\sin ^2 \alpha+\cos ^2 \alpha=1$ với mọi $\alpha$
$\tan \alpha \cdot \cot \alpha=1$ với $\cos \alpha \neq 0, \sin \alpha \neq 0$
$1+\tan ^2 \alpha=\frac{1}{\cos ^2 \alpha}$ với $\cos \alpha \neq 0$
$1+\cot ^2 \alpha=\frac{1}{\sin ^2 \alpha}$ với $\sin \alpha \neq 0$
- Giá trị lượng giác của các góc có liên quan đặc biệt
Hai góc đối nhau $\alpha$ và $-\alpha$
$\begin{aligned} & \sin (-\alpha)=-\sin \alpha \\ & \cos (-\alpha)=\cos \alpha \\ & \tan (-\alpha)=-\tan \alpha \\ & \cot (-\alpha)=-\cot \alpha\end{aligned}$.
Hai góc bù nhau $\alpha$ và $\pi-\alpha$
$\begin{aligned}& \sin (\pi-\alpha)=\sin \alpha \\& \cos (\pi-\alpha)=-\cos \alpha \\& \tan (\pi-\alpha)=-\tan \alpha \\& \cot (\pi-\alpha)=-\cot \alpha\end{aligned}$.
Hai góc hơn kém nhau $\pi$ ( $\alpha$ và $\alpha+\pi)$
$\begin{aligned}& \sin (\alpha+\pi)=-\sin \alpha \\& \cos (\alpha+\pi)=-\cos \alpha \\& \tan (\alpha+\pi)=\tan \alpha \\& \cot (\alpha+\pi)=\cot \alpha\end{aligned}$
Hai góc phụ nhau ( $\alpha$ và $\frac{\pi}{2}-\alpha$)
$\begin{aligned}& \sin \left(\frac{\pi}{2}-\alpha\right)=\cos \alpha \\& \cos \left(\frac{\pi}{2}-\alpha\right)=\sin \alpha \\& \tan \left(\frac{\pi}{2}-\alpha\right)=\cot \alpha \\& \cot \left(\frac{\pi}{2}-\alpha\right)=\tan \alpha\end{aligned}$
Công thức cộng
$\begin{aligned} & \sin (a+b)=\sin a \cdot \cos b+\cos a \cdot \sin b \\ & \sin (a-b)=\sin a \cdot \cos b-\cos a \cdot \sin b \\ & \cos (a+b)=\cos a \cdot \cos b-\sin a \cdot \sin b \\ & \cos (a-b)=\cos a \cdot \cos b+\sin a \cdot \sin b \\ & \tan (a+b)=\frac{\tan a+\tan b}{1-\tan a \tan b} \\ & \tan (a-b)=\frac{\tan a-\tan b}{1+\tan a \tan b}\end{aligned}$
(khi các biểu thức đều có nghĩa)
Công thức nhân đôi
$\begin{aligned}& \sin 2 a=2 \sin a \cos a \\& \cos 2 a=\cos ^2 \alpha-\sin ^2 \alpha \\&\tan 2 a=\frac{2 \tan a}{1-\tan ^2 a}\end{aligned}$
Công thức lượng giác nhân ba
$\begin{aligned}& \sin 3 x=3 \sin x-4 \sin ^3 x \\& \cos 3 x=4 \cos ^3 x-3 \cos x \\& \tan 3 x=\frac{3 \tan x-\tan ^3 x}{1-3 \tan ^2 x}\end{aligned}$.
Công thức lượng giác nhân bốn
$\begin{aligned}& \sin 4 x=4 \cdot \sin x \cdot \cos ^3 x-4 \cdot \cos x \cdot \sin ^3 x \\& \cos 4 x=8 \cdot \cos ^4 x-8 \cdot \cos ^2 x+1\end{aligned}$
hoặc ta có thể sử dụng $\cos 4 x=8 \cdot \sin ^4 x-8 \cdot \sin ^2 x+1$
Công thức hạ bậc
$\begin{aligned}& \cos ^2 a=\frac{1+\cos 2 a}{2} \\& \sin ^2 a=\frac{1-\cos 2 a}{2}\end{aligned}$
$\begin{aligned} & \sin ^3 x=\frac{3 \sin x-\sin 3 x}{4} \\ & \cos ^3 x=\frac{3 \cos x+\cos 3 x}{4}\end{aligned}$
Công thức biến đổi tích thành tổng
$\begin{aligned}& \cos a \cos b=\frac{1}{2}[\cos (a+b)+\cos (a-b)] \\& \sin a \sin b=-\frac{1}{2}[\cos (a+b)-\cos (a-b)] \\& \sin a \cos b=\frac{1}{2}[\sin (a+b)+\sin (a-b)]\end{aligned}$.
Công thức biến đổi tổng thành tích
$\begin{aligned}& \cos a+\cos b=2 \cos \frac{a+b}{2} \cos \frac{a-b}{2} \\& \cos a-\cos b=-2 \sin \frac{a+b}{2} \sin \frac{a-b}{2} \\& \sin a+\sin b=2 \sin \frac{a+b}{2} \cos \frac{a-b}{2} \\& \sin a-\sin b=2 \cos \frac{a+b}{2} \sin \frac{a-b}{2}\end{aligned}$
$\begin{aligned} & \tan a+\tan b=\frac{\sin (a+b)}{\cos a \cdot \cos b} \\ & \tan a-\tan b=\frac{\sin (a-b)}{\cos a \cdot \cos b} \\ & \sin a+\cos a=\sqrt{2} \sin \left(a+\frac{\pi}{4}\right)=\sqrt{2} \cos \left(a-\frac{\pi}{4}\right) \\ & \sin a-\cos a=\sqrt{2} \sin \left(a-\frac{\pi}{4}\right)=-\sqrt{2} \cos \left(a+\frac{\pi}{4}\right) \\ & \tan a+\cot a=\frac{2}{\sin 2 a} \\ & \cot a-\tan a=2 \cot 2 a\end{aligned}$
Một số công thức lượng giác nâng cao khác
$\begin{aligned} & \sin ^4 a+\cos ^4 a=1-\frac{1}{2} \sin ^2 2 a=\frac{1}{4} \cos 4 a+\frac{3}{4} \\ & \sin ^6 a+\cos ^6 a=1-\frac{3}{4} \sin ^2 2 a=\frac{3}{8} \cos 4 a+\frac{5}{8}\end{aligned}$
Ở một số bài toán để giải được nó ta cần phải sử dụng phương pháp đặt ẩn phụ, nếu ta đặt $t=\frac{\tan x}{2}$. Lúc này ta có thể biểu diễn các công thức lượng giác khác theo t như sau:
$\begin{aligned}& \sin x=\frac{2 t}{1+t^2} \\& \cos x=\frac{1-t^2}{1+t^2} \\& \tan x=\frac{2 t}{1-t^2} \\& \cot x=\frac{1-t^2}{2 t}\end{aligned}$.
Dưới đây là bảng xét dấu của các giá trị lượng giác sin, cos, tan, cot bạn nên học thuộc để thuận tiện trong quá trình giải bài tập toán:
Góc phần tư số | I | II | III | IV |
sin (x) | + | + | – | – |
cos (x) | + | – | – | + |
tan (x) | + | – | + | – |
cot (x) | + | – | + | – |
Góc (α) | Radian | sinα | cosα | tanα | cotα |
0 | 0 | 1 | 0 | Không xác định | |
1 | 1 | ||||
1 | 0 | Không xác định | 0 | ||
−1 | −1 | ||||
0 | −1 | 0 | Không xác định | ||
1 | 1 | ||||
−1 | 0 | Không xác định | 0 | ||
−1 | −1 | ||||
0 | 1 | 0 | Không xác định |
Chú ý:
Giá trị của tanα và cotα không xác định tại các góc mà hoặc .
Đối với các góc khác không trong bảng, ta có thể tính dựa trên các công thức lượng giác cơ bản.
Trên đây là toàn bộ công thức lượng giác quan trọng mà các em cần nắm vững. Học là Giỏi mong rằng, với sự kiên nhẫn, kiên trì và không ngừng luyện tập, các em sẽ làm tốt được các bài toán lượng giác nhé. Chúc các em thành công!
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Bí kíp chinh phục các hằng đẳng thức mở rộng
Thứ tư, 14/8/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Thể thơ song thất lục bát trong văn chương Việt Nam
Thứ ba, 28/5/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ ba, 26/11/2024 09:39 AM
Tứ giác nội tiếp là gì? Tính chất của tứ giác nội tiếp
Tứ giác nội tiếp là một trong những khái niệm quan trọng trong hình học lớp 9, đặc biệt khi tìm hiểu về các mối quan hệ giữa các điểm và đường tròn. Hãy cùng gia sư online Học là Giỏi khám phá tứ giác nội tiếp này là gì và chúng có các tính chất như thế nào nhé.
Thứ ba, 26/11/2024 04:35 AM
Khám phá lý thuyết về cung chứa góc toán 9
Khái niệm cung chứa góc ở trong toán lớp 9 đóng vai trò quan trọng khi tìm hiểu các tính chất và bài toán liên quan đến hình tròn. Cùng gia sư online Học là Giỏi đi sâu vào khái niệm và tính chất về cung chứa góc của đường tròn nhé.
Thứ hai, 25/11/2024 09:30 AM
Tìm hiểu góc có đỉnh ở bên trong đường tròn, bên ngoài đường tròn
Góc có đỉnh nằm bên trong đường tròn hoặc bên ngoài đường tròn mang đến những đặc điểm và tính chất riêng. Việc tìm hiểu về các loại góc này hỗ trợ rất nhiều trong việc giải quyết các bài toán hình học phức tạp. Hãy cùng gia sư online Học là Giỏi khám phá những khái niệm và định lý về góc có đỉnh nằm bên trong và bên ngoài đường tròn nhé.
Thứ sáu, 22/11/2024 09:18 AM
Chinh phục kiến thức về góc nội tiếp
Trong hình tròn, góc nội tiếp là một chủ đề cơ bản khi chúng có nhiều tính chất cần lưu ý trong hình học phẳng. Đây là khái niệm giúp chúng ta hiểu thêm các định lý liên quan đến đường tròn. Cùng gia sư online Học là Giỏi tìm hiểu về góc nội tiếp có gì đặc biệt và những nội dung quan trọng trong bài học này nhé.
Thứ ba, 19/11/2024 10:06 AM
Khám phá mối liên hệ giữa cung và dây
Mối liên hệ giữa cung và dây cung của đường tròn là chủ đề quan trọng trong chương trình hình học lớp 9. Dù chúng ta đã quá quen thuộc với hình ảnh những đường tròn, ít ai biết rằng cung và dây cung tạo sự liên kết mật thiết trong hình tròn. Hãy cùng gia sư online Học là Giỏi tìm hiểu rõ mối quan hệ này có gì đặc biệt nhé.
Thứ hai, 18/11/2024 10:07 AM
Tổng hợp kiến thức vị trí tương đối của hai đường tròn
Vị trí tương đối của hai đường tròn là kiến thức quan trọng để xét các tính chất của 2 đường tròn này có mối quan hệ gì với nhau. Hãy cùng gia sư online Học là Giỏi khám phá các trường hợp cơ bản về vị trí tương đối của hai đường tròn này nhé.