Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức

Tìm hiểu góc có đỉnh ở bên trong đường tròn, bên ngoài đường tròn

schedule.svg

Thứ hai, 25/11/2024 09:31 AM

Tác giả: Admin Hoclagioi

Góc có đỉnh nằm bên trong đường tròn hoặc bên ngoài đường tròn mang đến những đặc điểm và tính chất riêng. Việc tìm hiểu về các loại góc này hỗ trợ rất nhiều trong việc giải quyết các bài toán hình học phức tạp. Hãy cùng gia sư online Học là Giỏi khám phá những khái niệm và định lý về góc có đỉnh nằm bên trong và bên ngoài đường tròn nhé.

Mục lục [Ẩn]

Khái niệm góc có đỉnh ở bên trong đường tròn

góc có đỉnh ở bên trong đường tròn

Định nghĩa: Góc có đỉnh nằm bên trong đường tròn được gọi là góc có chứa đỉnh ở phía bên trong đường tròn đó.

Ví dụ: Góc BIC^ có đỉnh nằm trong đường tròn (O) được gọi là góc có đỉnh ở bên trong đường tròn, chắn hai cung là BnC và AmD.

góc có đỉnh ở bên trong đường tròn

Định lý góc có đỉnh ở bên trong đường tròn

Số đo của một góc có đỉnh nằm bên trong đường tròn bằng một nửa tổng số đo của hai cung mà nó chắn.

Ví dụ: Trong hình trênBIC^=12(sđ cung BC+sđ cung AD)

Khái niệm góc có đỉnh ở bên ngoài đường tròn

Định nghĩa: Góc có đỉnh nằm ngoài đường tròn là góc mà đỉnh của nó ở ngoài đường tròn, đồng thời các cạnh của góc đều cắt hoặc tiếp xúc với đường tròn.

góc có đỉnh ở bên ngoài đường tròn

Hai cung bị chắn bởi góc là hai cung nằm trong phạm vi góc đó. Trong hình trên, góc ∠BIC có đỉnh nằm ngoài đường tròn và chắn hai cung BnC và AmD.

Định lý góc có đỉnh ở bên ngoài đường tròn

Số đo của một góc có đỉnh nằm ngoài đường tròn được tính bằng một nửa hiệu số đo của hai cung mà góc đó chắn.

Đối với hình trên, ta có: BIC^=sđ cung BnC -sđ cung AmD2

Bài tập góc có đỉnh ở bên trong đường tròn và ngoài đường tròn

Để nắm rõ kiến thức cơ bản trên thì phải luyện tập thường xuyên với các dạng bài tập. Dưới đây là các dạng cơ bản và nâng cao mà bạn có thể tham khảo.

Bài tập cơ bản

Bài 1: Xét tam giác ABC cân tại A và nội tiếp trong đường tròn tâm O. Điểm D nằm trên cung AC, E là giao điểm của AC với BD, và F là giao điểm của AD với BC. Chứng minh rằng AFB^=ABD^\widehat{AFB} = \widehat{ABD}.

Xét tam giác ABC cân tại A và nội tiếp trong đường tròn tâm O. Điểm D nằm trên cung AC, E là giao điểm của AC với BD, và F là giao điểm của AD với BC.

Vì tam giác ABC cân tại A, nên AB=AC. Do đó, suy ra số đo cung AB=AC.

Ta có:

AFB^=12(sđ ABsđ CD)=12(sđ ACsđ CD )=12sđ AD.

Mặt khác,

ABD^=12sđ AD.

Do đó, suy ra AFB^=ABD^\widehat{AFB} = \widehat{ABD}.

Bài 2: Xét tam giác ABC nội tiếp đường tròn tâm O. Gọi P, Q, R lần lượt là giao điểm của các tia phân giác trong các góc A, B, C với đường tròn. Chứng minh rằng AP⊥QR.

Xét tam giác ABC nội tiếp đường tròn tâm O. Gọi P, Q, R lần lượt là giao điểm của các tia phân giác trong các góc A, B, C với đường tròn. Chứng minh rằng AP⊥QR.

Ta có:

Tia phân giác AP chia cung BC thành hai phần bằng nhau, do đó BP=PC.

Tương tự:

AQ=CQ, AR=BR.

Gọi S là giao điểm của AP và QR. Khi đó:

ASQ^=12(sđ AQ+sđ PR).

Ta có:

sđ AQ=12sđ AC, sđ PR=12(sđ AB+sđ BC).

Khi thay vào, ta được:

ASQ^=12(12sđ AC+12(sđ AB+sđ BC)).

Do sđ AC+sđ AB+sđ BC=360, ta có:

ASQ^=1212360=90.\widehat{ASQ} = \frac{1}{2} \cdot \frac{1}{2} \cdot 360^\circ = 90^\circ.

Vậy AP⊥QR.

Bài tập nâng cao

Bài 3: Xét tam giác đều ABC nội tiếp đường tròn tâm O. Gọi D là một điểm di động trên cung nhỏ AC, F là giao điểm của AD và BC, E là giao điểm của AC và BD. Chứng minh rằng tích AEBFAE \cdot BF không phụ thuộc vào vị trí của D.

Xét tam giác đều ABC nội tiếp đường tròn tâm O. Gọi D là một điểm di động trên cung nhỏ AC, F là giao điểm của AD và BC, E là giao điểm của AC và BD. Chứng minh rằng tích   A  E  ⋅  B  F  AE \cdot BF   không phụ thuộc vào vị trí của D.

Vì AB=AC, nên số đo cung AB=AC.

Ta có:

AFB^=12(sđ ABsđ CD)=12(sđ ACsđ CD)=12sđ AD.

Mặt khác:

ABD^=12sđ AD.

Do đó, AFB^=ABD^\widehat{AFB} = \widehat{ABD}.

Xét hai tam giác △AFB và △EBA:

-  AFB^=ABD^\widehat{AFB} = \widehat{ABD}(cmt)

-  FBA^=BAE^=60 vì △ABC đều.

Do đó, △AFB∼△EBA (g.g).

Từ tính chất của hai tam giác đồng dạng, ta có:

ABAE=BFAB    AEBF=AB2.\frac{AB}{AE} = \frac{BF}{AB} \implies AE \cdot BF = AB^2.

Vì AB là hằng số, suy ra AE⋅BF không thay đổi, bất kể vị trí của D.

Vậy, tích AE⋅BF không phụ thuộc vào vị trí của điểm D.

Bài 4: Xét tứ giác ABCD có các góc B và D là góc tù. Chứng minh rằng AC>BD.

Xét tứ giác ABCD có các góc B và D là góc tù. Chứng minh rằng AC>BD

Vẽ đường tròn tâm O với đường kính AC.

Ta có ABC^>90\widehat{ABC} > 90^\circ và ADC^>90\widehat{ADC} > 90^\circ, do đó, B và D là hai điểm nằm trong đường tròn O.

Suy ra, chiều dài đoạn thẳng BD nhỏ hơn chiều dài của dây cung chứa nó.

Mặt khác, đường kính AC là dây cung dài nhất trong đường tròn.

Vậy, AC>BD.

Kết luận

Tìm hiểu về các loại góc có đỉnh nằm bên trong và bên ngoài đường tròn giúp ta làm quen với những định lý cơ bản trong hình học. Trung tâm gia sư online Học là Giỏi hy vọng bạn đã nắm bắt được những kiến thức này và dễ dàng vận dụng với các bài tập trong tương lai về các loại góc đặc biệt này nhé.

Chủ đề:

Đăng ký học thử ngay hôm nay

Để con học sớm - Ôn sâu và nhận ưu đãi học phí!

Bài viết liên quan

Đáp án, đề thi giữa kì 1 toán 9 Kết nối tri thức 2025-2026
schedule

Thứ năm, 23/10/2025 09:44 AM

Đáp án, đề thi giữa kì 1 toán 9 Kết nối tri thức 2025-2026

Trong quá trình ôn tập và chuẩn bị cho kỳ thi, việc tham khảo Đề thi giữa kì 1 Toán 9 Kết nối tri thức là vô cùng cần thiết giúp học sinh rèn luyện kỹ năng làm bài. Bộ đề thi được Học là Giỏi tổng hợp và biên soạn bám sát chương trình mới, giúp các em làm quen với cấu trúc đề, dạng câu hỏi thường gặp và cách phân bổ thời gian hợp lý trong phòng thi.

Một số bài toán về đại lượng tỉ lệ thuận kèm lời giải
schedule

Thứ ba, 21/10/2025 08:25 AM

Một số bài toán về đại lượng tỉ lệ thuận kèm lời giải

Trong chương trình Toán 7, đại lượng tỉ lệ thuận là một nội dung quan trọng giúp học sinh hiểu rõ mối quan hệ giữa hai yếu tố thay đổi cùng chiều. Học sinh cần nắm được một số bài toán về đại lượng tỉ lệ thuận để giải được đa dạng các dạng bài thường xuất hiện trong các đề thi, đề kiểm tra. Hãy cùng Học là Giỏi tìm hiểu một số bài toán về đại lượng tỉ lệ thuận qua bài viết dưới đây!

Tổng hợp kiến thức Toán lớp 5 đầy đủ nhất
schedule

Thứ ba, 14/10/2025 07:19 AM

Tổng hợp kiến thức Toán lớp 5 đầy đủ nhất

Chương trình Toán lớp 5 là bước chuyển quan trọng tạo nền tảng cho môn Toán ở bậc THCS. Trong chương trình Toán 5, học sinh được làm quen với nhiều dạng kiến thức mới như phân số, số thập phân, tỉ số, tỉ lệ, các bài toán thực tế và hình khối. Học là Giỏi đã tổng hợp các kiến thức trọng tâm của chương trình Toán lớp 5 dưới dạng trực quan, giúp học sinh dễ theo dõi và ôn tập. Hãy cùng ôn tập về phần kiến thức này qua bài tổng hợp kiến thức Toán lớp 5 dưới đây.

Tổng hợp kiến thức Toán 3 quan trọng
schedule

Thứ ba, 14/10/2025 03:10 AM

Tổng hợp kiến thức Toán 3 quan trọng

Toán lớp 3 là môn học cung cấp nền tảng từ những kiến thức cơ bản nhất, giúp học sinh rèn luyện tư duy và khả năng tính toán. Để học tốt, các con cần ghi nhớ và hiểu rõ những công thức từ bảng nhân chia, quy tắc tính toán, lý thuyết cơ bản về hình học và giải được các bài toán có lời văn. Bộ tổng hợp kiến thức Toán 3 quan trọng dưới đây có tổng hợp đầy đủ các công thức và nội dung cần nhớ với các quy tắc và ví dụ minh họa dễ hiểu, giúp học sinh dễ dàng hệ thống kiến thức và nắm được các nội dung cốt lõi.

Tổng hợp kiến thức Toán lớp 4 dễ hiểu nhất
schedule

Thứ hai, 13/10/2025 10:28 AM

Tổng hợp kiến thức Toán lớp 4 dễ hiểu nhất

Toán lớp 4 là cơ sở kiến thức quan trọng giúp học sinh củng cố nền tảng tư duy và các kỹ năng tính toán, bổ trợ cho việc học các kiến thức Toán học phức tạp hơn. Tuy nhiên, với nhiều kiến thức và dạng bài khác nhau, các em có thể gặp khó khăn trong việc ghi nhớ các công thức. Hiểu được điều đó, Học là Giỏi đã tổng hợp toàn bộ kiến thức trọng tâm Toán lớp 4 qua những bảng tóm tắt ngắn gọn, giúp học sinh có thể học nhanh, nhớ lâu và áp dụng hiệu quả các công thức Toán 4 vào giải bài tập. Hãy cùng tìm hiểu tất cả kiến thức Toán 4 qua bài viết dưới đây!

Tia là gì? Khái niệm cơ bản và tính chất trong hình học
schedule

Thứ năm, 28/8/2025 04:23 AM

Tia là gì? Khái niệm cơ bản và tính chất trong hình học

Trong hình học, một trong những khái niệm mà học sinh cần nắm vững chính là tia. Nhiều bạn thường đặt câu hỏi: tia là gì và cách phân biệt nó với đoạn thẳng hay đường thẳng như thế nào? Học là Giỏi sẽ giúp bạn tìm hiểu chi tiết về tia là gì, các tính chất quan trọng và những bài tập minh họa dễ hiểu qua bài viết dưới đây nhé.

message.svg zalo.png