Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Góc có đỉnh nằm bên trong đường tròn hoặc bên ngoài đường tròn mang đến những đặc điểm và tính chất riêng. Việc tìm hiểu về các loại góc này hỗ trợ rất nhiều trong việc giải quyết các bài toán hình học phức tạp. Hãy cùng gia sư online Học là Giỏi khám phá những khái niệm và định lý về góc có đỉnh nằm bên trong và bên ngoài đường tròn nhé.
Mục lục [Ẩn]
Định nghĩa: Góc có đỉnh nằm bên trong đường tròn được gọi là góc có chứa đỉnh ở phía bên trong đường tròn đó.
Ví dụ: Góc có đỉnh nằm trong đường tròn (O) được gọi là góc có đỉnh ở bên trong đường tròn, chắn hai cung là BnC và AmD.
Số đo của một góc có đỉnh nằm bên trong đường tròn bằng một nửa tổng số đo của hai cung mà nó chắn.
Ví dụ: Trong hình trên,
Định nghĩa: Góc có đỉnh nằm ngoài đường tròn là góc mà đỉnh của nó ở ngoài đường tròn, đồng thời các cạnh của góc đều cắt hoặc tiếp xúc với đường tròn.
Hai cung bị chắn bởi góc là hai cung nằm trong phạm vi góc đó. Trong hình trên, góc ∠BIC có đỉnh nằm ngoài đường tròn và chắn hai cung BnC và AmD.
Số đo của một góc có đỉnh nằm ngoài đường tròn được tính bằng một nửa hiệu số đo của hai cung mà góc đó chắn.
Đối với hình trên, ta có:
Để nắm rõ kiến thức cơ bản trên thì phải luyện tập thường xuyên với các dạng bài tập. Dưới đây là các dạng cơ bản và nâng cao mà bạn có thể tham khảo.
Bài 1: Xét tam giác ABC cân tại A và nội tiếp trong đường tròn tâm O. Điểm D nằm trên cung AC, E là giao điểm của AC với BD, và F là giao điểm của AD với BC. Chứng minh rằng .
Vì tam giác ABC cân tại A, nên AB=AC. Do đó, suy ra số đo cung AB=AC.
Ta có:
Mặt khác,
Do đó, suy ra .
Bài 2: Xét tam giác ABC nội tiếp đường tròn tâm O. Gọi P, Q, R lần lượt là giao điểm của các tia phân giác trong các góc A, B, C với đường tròn. Chứng minh rằng AP⊥QR.
Ta có:
Tia phân giác AP chia cung thành hai phần bằng nhau, do đó .
Tương tự:
Gọi S là giao điểm của AP và QR. Khi đó:
Ta có:
Khi thay vào, ta được:
Do , ta có:
Vậy AP⊥QR.
Bài 3: Xét tam giác đều ABC nội tiếp đường tròn tâm O. Gọi D là một điểm di động trên cung nhỏ AC, F là giao điểm của AD và BC, E là giao điểm của AC và BD. Chứng minh rằng tích không phụ thuộc vào vị trí của D.
Vì AB=AC, nên số đo cung .
Ta có:
Mặt khác:
Do đó, .
Xét hai tam giác △AFB và △EBA:
- (cmt)
- vì △ABC đều.
Do đó, △AFB∼△EBA (g.g).
Từ tính chất của hai tam giác đồng dạng, ta có:
Vì AB là hằng số, suy ra AE⋅BF không thay đổi, bất kể vị trí của D.
Vậy, tích AE⋅BF không phụ thuộc vào vị trí của điểm D.
Bài 4: Xét tứ giác ABCD có các góc B và D là góc tù. Chứng minh rằng AC>BD.
Vẽ đường tròn tâm O với đường kính AC.
Ta có và , do đó, B và D là hai điểm nằm trong đường tròn O.
Suy ra, chiều dài đoạn thẳng BD nhỏ hơn chiều dài của dây cung chứa nó.
Mặt khác, đường kính AC là dây cung dài nhất trong đường tròn.
Vậy, AC>BD.
Tìm hiểu về các loại góc có đỉnh nằm bên trong và bên ngoài đường tròn giúp ta làm quen với những định lý cơ bản trong hình học. Trung tâm gia sư online Học là Giỏi hy vọng bạn đã nắm bắt được những kiến thức này và dễ dàng vận dụng với các bài tập trong tương lai về các loại góc đặc biệt này nhé.
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
STEM là gì? Lợi ích và ứng dụng trong giáo dục hiện đại
Thứ ba, 12/8/2025Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Bảng tuần hoàn nguyên tố hóa học theo chương trình mới
Thứ hai, 15/4/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ năm, 28/8/2025 04:23 AM
Tia là gì? Khái niệm cơ bản và tính chất trong hình học
Trong hình học, một trong những khái niệm mà học sinh cần nắm vững chính là tia. Nhiều bạn thường đặt câu hỏi: tia là gì và cách phân biệt nó với đoạn thẳng hay đường thẳng như thế nào? Học là Giỏi sẽ giúp bạn tìm hiểu chi tiết về tia là gì, các tính chất quan trọng và những bài tập minh họa dễ hiểu qua bài viết dưới đây nhé.
Thứ tư, 27/8/2025 02:03 PM
Đoạn thẳng là gì? Cách tính độ dài đoạn thẳng
Trong chương trình toán học cơ bản, từ những bài toán hình học đầu tiên, học sinh đã được làm quen với đoạn thẳng để nghiên cứu đường thẳng, góc, tam giác hay các hình đa giác phức tạp hơn. Học là Giỏi sẽ giúp bạn hiểu rõ khái niệm, tính chất và các dạng bài tập cũng như nắm bắt được cách tính độ dài đoạn thẳng nhé.
Thứ tư, 27/8/2025 08:20 AM
Đường thẳng và những kiến thức nền tảng cần ghi nhớ
Trong hình học, đường thẳng là một trong những khái niệm cơ bản và xuất hiện nhiều trong các đề thi và bài kiểm tra. Học là Giỏi sẽ giúp bạn hiểu rõ hơn về đặc điểm, ứng dụng và cách giải bài tập liên quan đến đường thẳng thông qua bài viết này nhé.
Thứ tư, 27/8/2025 03:12 AM
Hướng dẫn học bảng nhân 6 hiệu quả tại nhà
Bảng nhân 6 là một phần không thể thiếu trong bảng cửu chương, thường xuất hiện trong nhiều dạng bài tập và tình huống thực tế. Học là Giỏi sẽ giúp bạn hiểu rõ quy luật, ghi nhớ dễ dàng và thực hành hiệu quả bảng nhân 6.
Thứ ba, 26/8/2025 09:12 AM
Tổng hợp công thức tính phương sai và độ lệch chuẩn dễ nhớ
Trong thống kê và xác suất, cách dữ liệu phân tán quanh giá trị trung bình có ý nghĩa trong học tập cũng như thực tiễn. Hai công thức này thường được sử dụng để đo lường mức độ biến động đó chính là phương sai và độ lệch chuẩn. Học là Giỏi sẽ giúp bạn nắm vững kiến thức cơ bản về phương sai và độ lệch chuẩn, kèm theo bài tập minh họa dễ hiểu.
Thứ hai, 25/8/2025 09:45 AM
Tập hợp con là gì? Các trường hợp đặc biệt của tập hợp con
Khái niệm tập hợp hỗ trợ học sinh làm quen với cách mô tả và phân loại đối tượng trong môn toán cấp 3. Trong đó, tập hợp con là gì luôn là câu hỏi thường gặp bởi đây là kiến thức cơ bản nhưng lại có ứng dụng trong nhiều dạng bài tập. Học là Giỏi sẽ giúp bạn nắm vững khái niệm, tính chất và cách vận dụng tập hợp con một cách rõ ràng, dễ hiểu.