Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Đạo hàm là một kiến thức khá quan trọng trong chương trình toán 11. Để làm tốt được các bài đạo hàm, chúng ta cần nắm vững công thức đạo hàm. Sau đây là tổng hợp đầy đủ công thức đạo hàm, cùng Học là Giỏi theo dõi nhé
Mục lục [Ẩn]
Đạo hàm của một hàm số tại một điểm trên miền xác định của hàm số được định nghĩa là giới hạn sau:
trong đó:
: Số gia của biến số , tức là .
: Số gia của hàm số tại điểm , tức là ).
Giới hạn này biểu diễn tốc độ thay đổi tức thời của hàm số tại điểm .
Để tính bằng định nghĩa, thực hiện theo 3 bước sau:
Bước 1: Tìm số gia
Bước 2: Rút gọn tỉ số
Chia cho :
Bước 3: Tính giới hạn
Lấy giới hạn khi
Nếu giới hạn tồn tại và bằng một số cụ thể , thì ta kết luận:
Trong mục này, chúng mình cùng nhắc lại đạo hàm của tổng, hiệu, tích, thương; bảng đạo hàm của một số hàm sơ cấp cơ bản và hàm hợp. Ngoài ra, chúng mình còn được mở rộng thêm về đạo hàm của các phân thức hữu tỉ và đạo hàm cấp cao nữa nhé.
Giả sử $f=f(x), g=g(x)$ là các hàm số có đạo hàm tại điểm $x$ thuộc khoảng xác định. Ta có:
$(f + g)^{\prime} =f^{\prime}+ g^{\prime}$ ; $(f - g)^{\prime} = f^{\prime} - g^{\prime}$;
$(f . g)^{\prime}= f^{\prime}.g + f g^{\prime}$ ; $\left(\dfrac{f}{g}\right)’=\dfrac{f’ g-f g’}{g^2}, (g=g(x) \neq 0) .$
Đạo hàm của hàm số sơ cấp cơ bản thường gặp | Đạo hàm của hàm hợp (ở đây $u=u(x)$ |
$\left(x^n\right)^{\prime}=n \cdot x^{n-1}$ | $\left(u^n\right)^{\prime}=n \cdot u^{n-1} \cdot u^{\prime}$ |
$\left(\frac{1}{x}\right)^{\prime}=-\frac{1}{x^2}$ | $\left(\frac{1}{u}\right)^{\prime}=-\frac{u^{\prime}}{u^2}$ |
$(\sqrt{x})^{\prime}=\frac{1}{2 \sqrt{x}}$ | $(\sqrt{u})^{\prime}=\frac{u^{\prime}}{2 \sqrt{u}}$ |
$(\sin x)^{\prime}=\cos x$ | $(\sin u)^{\prime}=u^{\prime} \cdot \cos u$ |
$(\cos x)^{\prime}=-\sin x$ | $(\cos u)^{\prime}=-u^{\prime} \cdot \sin u$ |
$(\tan x)^{\prime}=\frac{1}{\cos ^2 x}$ | $(\tan u)^{\prime}=\frac{u^{\prime}}{\cos ^2 u}$ |
$(\cot x)^{\prime}=-\frac{1}{\sin ^2 x}$ | $(\cot u)^{\prime}=-\frac{u^{\prime}}{\sin ^2 u}$ |
$\left(e^x\right)^{\prime}=e^x$ | $\left(e^u\right)^{\prime}=u^{\prime} \cdot e^u$ |
$\left(a^x\right)^{\prime}=a^x \ln a$ | $\left(a^u\right)^{\prime}=u^{\prime} \cdot a^u \ln a$ |
$(\ln x)^{\prime}=\frac{1}{x}$ | $(\ln u)^{\prime}=\frac{u^{\prime}}{u}$ |
$\left(\log _a x\right)^{\prime}=\frac{1}{x \ln a}$ | $\left(\log _a u\right)^{\prime}=\frac{u^{\prime}}{u \ln a}$ |
$\begin{aligned} & \left(\frac{a x+b}{c x+d}\right)^{\prime}=\frac{\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|}{(c x+d)^2}=\frac{a d-b c}{(c x+d)^2} \\ & \left(\frac{a x^2+b x+c}{e x+f}\right)^{\prime}=\frac{a e x^2+2 a f x+(b f-c e)}{(e x+f)^2} \\ & \left(\frac{a_1 x^2+b_1 x+c_1}{a_2 x^2+b_2 x+c_2}\right)^{\prime}=\frac{\left|\begin{array}{ll}a_1 & b_1 \\ a_2 & b_2\end{array}\right| x^2+2\left|\begin{array}{ll}a_1 & c_1 \\ a_2 & c_2\end{array}\right| x+\left|\begin{array}{ll}b_1 & c_1 \\ b_2 & c_2\end{array}\right|}{\left(a_2 x^2+b_2 x+c_2\right)^2} \\ & \end{aligned}$
- Đạo hàm lũy thừa: $\left(x^m\right)^{(n)}= \begin{cases}m(m-1)(m-2) \ldots(m-n+1) x^{m-n} & (m \geq n) \\ 0 & (m<n)\end{cases}$
- Đạo hàm của hàm số mũ và logarit:
$\left(\log _a x\right)^{(n)}=(-1)^{n-1} \frac{(n-1) !}{\ln a} \frac{1}{x^n}$
$(\ln x)^{(n)}=(-1)^{n-1}(n-1) ! x^{-n}$
$\left(e^{k x}\right)^{(n)}=k^n e^{k x}$
$\left(a^x\right)^{(n)}=(\ln a)^n a^x$
- Đạo hàm của hàm số lượng giác:
$(\sin a x)^{(n)}=a^n \sin \left(a x+\frac{n \pi}{2}\right)$
$(\cos a x)^{(n)}=a^n \cos \left(a x+\frac{n \pi}{2}\right)$
- Đạo hàm của phân thức hữu tỉ: $\left(\frac{1}{a x+b}\right)^{(n)}=(-1)^n a^n n ! \frac{1}{(a x+b)^{n+1}}$
Trong chương trình môn Toán, việc nắm vững các công thức đạo hàm cơ bản là chưa đủ. Để giải quyết các bài toán phức tạp hơn, học sinh cần hiểu và áp dụng các công thức đạo hàm mở rộng. Các công thức này thường xuất hiện trong các bài kiểm tra và đề thi chuyên đề. Dưới đây là các công thức mở rộng:
Đạo hàm của hàm mũ:
Đạo hàm của hàm logarit:
Đạo hàm của hàm sin, cos nhiều lần:
Đạo hàm của hàm tan và cotan:
Đạo hàm của phân thức bậc cao:
Đạo hàm của các hàm lũy thừa và hàm số mũ nhiều lần:
Đạo hàm của hàm số mũ và logarit nhiều lần:
Trong quá trình giải toán liên quan đến đạo hàm, các quy tắc tính là công cụ vô cùng quan trọng, giúp chúng ta xử lý những bài toán từ đơn giản đến phức tạp một cách nhanh chóng và chính xác. Sau đây là các quy tắc cần nhớ:
Kết hợp các quy tắc linh hoạt để tính đạo hàm cho bài toán phức tạp.
Ví dụ:
Tính :
Áp dụng quy tắc thương và tích, kết quả:
Các bạn hãy lấy giấy, bút, nháp để làm các bài tập dưới đây nhé. Đây là các dạng bài tập cơ bản sử dụng công thức tính đạo hàm.
Câu 1. Hàm số $f(x)=x^3+2 x^2+4 x+5$ có đạo hàm $f^{\prime}(x)$ là:
A. $f^{\prime}(x)=3 x^2+4 x+4$ B. $f^{\prime}(x)=3 x^2+4 x+4+5$
C. $f^{\prime}(x)=3 x^2+2 x+4$ D. $f^{\prime}(x)=3 x+2 x+4$
Câu 2. Tính đạo hàm của hàm số sau $y=\frac{2 x+1}{x+2}$
A. $-\frac{3}{(x+2)^2}$ B. $\frac{3}{x+2}$
C. $\frac{3}{(x+2)^2}$ D. $\frac{2}{(x+2)^2}$
Câu 3. Cho hàm số $f(x)=\sqrt[3]{x}$. Giá trị của $f^{\prime}(8)$ bằng:
A. $\frac{1}{6}$ B. $\frac{1}{12}$ C. $-\frac{1}{6}$ D. $-\frac{1}{12}$
Câu 4. Cho hàm số $y=\frac{3}{1-x}$. Để $y^{\prime}<0$ thì x nhận các giá trị thuộc tập nào sau đây?
A. 1. B. 3. C. $\emptyset$. D. $\mathrm{R}$.
Câu 5. Đạo hàm của hàm số $y=\frac{1}{x^3}-\frac{1}{x^2}$ bằng biểu thức nào sau đây?
A. $-\frac{3}{x^4}+\frac{1}{x^3}$ B. $\frac{-3}{x^4}+\frac{2}{x^3}$
C. $\frac{-3}{x^4}-\frac{2}{x^3}$ D. $\frac{3}{x^4}-\frac{1}{x^3}$
Câu 6. Đạo hàm của hàm số $y=\left(1-x^3\right)^5$ là :
A. $y^{\prime}=5 x^2\left(1-x^3\right)^4$ B. $y^{\prime}=-15 x^2\left(1-x^3\right)^4$
C. $y^{\prime}=-3 x^2\left(1-x^3\right)^4$ D. $y^{\prime}=-5 x^2\left(1-x^3\right)^4$
Câu 7. Nếu hàm số $f(x)=\sqrt{2 x-1}$ thì $f^{\prime}(5)$ bằng
A. 3. B. $\dfrac{1}{6}$. C. $\dfrac{1}{3}$. D. $\dfrac{2}{3}$.
Bài 1. Tính đạo hàm của các hàm số sau
1. $y=-2 x^4+4 x^2-3 x+1$.
2. $y=x^3-3 x^2+x-1$.
3. $y=\frac{1}{2} x^3+x^4-x^3-\frac{3}{2} x^2+4 x-5$.
Bài 2. Tính đạo hàm của các hàm số sau
1. $y=\left(x^2+x\right)\left(3-x^2\right)$.
2. $y=(2 x-1)^2(2 x+1)^2$.
3. $y=x(2 x-1)(3 x+2)$.
Bài 3. Tìm đạo hàm của hàm số sau
1. $y=\left(2 x^3-3 x^2-6 x+1\right)^2$.
2. $y=\left(x^7+3 x^4+2\right)^{10}$.
3. $y=\left(x^4-2 x^2+x-1\right)^2$.
Bài 4. Tính đạo hàm của các hàm số sau
1. $y=\frac{2 x-1}{4 x-3}$.
2. $y=\frac{3}{2 x+1}$.
3. $y=\frac{2 x+1}{1-3 x}$.
Bài 5. Tính đạo hàm của các hàm số sau
1. $y=\frac{1}{x+1}-2 x$.
2. $y=\frac{1}{x^2-2 x+1}$.
3. $y=\frac{1}{x^2-3 x+1}$.
Nếu đã làm xong bài phía trên, chúng mình cùng kiểm tra đáp án nhé.
Bài tập trắc nghiệm
Câu 1. A Câu 2. C Câu 3. B Câu 4. C Câu 5. B Câu 6. B Câu 7. C
Bài tập tự luận
Bài 1.
1. $-8x^3+8 x-3$
2. $3x^2-6 x+1$
3. $\frac{5}{2}x^4+4x^3-3x^2-3x+4$
Bài 2.
1. $-4 x^3-3 x^2+6 x+3$
2. $16 x^2+4$
3. $18 x^2+2 x-2$
Bài 3.
1. $25 x^5-60 x^4-60 x^3+120 x^2+60 x-12$
2. $10\left(x^7+3 x^4+2\right)^9 \cdot\left(7 x^6+12 x^3\right)$
3. $8 x^7-24 x^5+10 x^4+8 x^3-12 x^2+10 x-2$
Bài 4.
1. $\frac{-2}{(4 x-3)^2}$
2. $\frac{-6}{(2 x+1)^2}$
3. $\frac{5}{(1-3 x)^2}$
Bài 5.
1. $-\frac{1}{(x+1)^2}-2$
2. $-\frac{2}{(x-1)^3}$
3. $ \frac{3-2 x}{\left(x^2-3 x+1\right)^2}$
Hy vọng với việc Trung tâm giá sư online Học là Giỏi tổng hợp các công thức đạo hàm và một số bài tập luyện ở trên sẽ giúp chúng mình nhớ và áp dụng giải được các bài toán tính đạo hàm trong chương trình toán lớp 11 nhé.
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Bí kíp chinh phục các hằng đẳng thức mở rộng
Thứ tư, 14/8/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Thể thơ song thất lục bát trong văn chương Việt Nam
Thứ ba, 28/5/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ sáu, 16/5/2025 09:20 AM
Tổng hợp đề ôn tập hè lớp 5 lên 6 môn toán có chọn lọc
Đối với các bạn học sinh chuẩn bị lên lớp 6, việc ôn tập hè lớp 5 lên 6 môn toán giúp nhớ lại chương trình học cũ, tự tin bước vào cấp học quan trọng tiếp theo. Hôm nay gia sư online Học là Giỏi cung cấp kho đề ôn luyện đa dạng để hỗ trợ các em củng cố kiến thức vững chắc trong quá trình học tập nhé.
Thứ tư, 7/5/2025 08:59 AM
Kinh nghiệm chọn gia sư toán lớp 11 tại Hà Nội phù hợp nhất
Nhiều học sinh luôn gặp khó khăn với chương trình toán nâng cao và thiếu các phương pháp học hiệu quả khi vào lớp 11. Vì vậy, việc tìm gia sư toán lớp 11 tại Hà Nội trở thành giải pháp tối ưu giúp học sinh nắm chắc kiến thức và cải thiện thành tích học tập. Gia sư online Học là Giỏi sẽ giúp bạn hiểu cách lựa chọn gia sư toán lớp 11 tại Hà Nội sao cho phù hợp nhất.
Thứ tư, 7/5/2025 07:52 AM
Tại sao cần tìm gia sư toán lớp 10 tại Hà Nội?
Lựa chọn gia sư toán lớp 10 tại Hà Nội giúp con kịp thời tháo gỡ những vướng mắc trong quá trình học, đồng thời tạo tiền đề vững chắc để con tự tin trước những thử thách học tập. Trong bài viết dưới đây, Gia sư online Học là Giỏi sẽ chỉ cho các bậc phụ huynh cách tìm gia sư toán lớp 10 tại Hà Nội sao cho phù hợp nhất nhé.
Thứ hai, 5/5/2025 10:27 AM
Làm thế nào để chọn gia sư toán lớp 7 tại Hà Nội?
Với học sinh lớp 7, toán học là nền tảng của các môn học liên quan đến tính toán và cũng là bước đệm cho những kỳ thi quan trọng sau này. Gia sư online Học là Giỏi sẽ chia sẻ cách chọn gia sư toán lớp 7 tại Hà Nội trong bài viết dưới đây nhé.
Thứ hai, 28/4/2025 06:51 AM
Bí quyết cách học giỏi toán mọi học sinh cần biết
Toán học luôn là một môn học quan trọng trong chương trình giáo dục và cả trong cuộc sống hàng ngày. Tuy nhiên, không phải ai cũng dễ dàng nắm vững được các kiến thức và kỹ năng cần thiết để học giỏi môn toán. Hãy cùng gia sư online Học là Giỏi cung cấp những cách học giỏi toán đơn giản, giúp bạn tự tin và thành công trong việc học tập.
Thứ sáu, 25/4/2025 07:16 AM
Mẹo học bảng nhân 5 cực dễ hiểu cho học sinh tiểu học
Bảng nhân 5 là một phần không thể thiếu trong hệ thống bảng cửu chương hỗ trợ học sinh ghi nhớ và vận dụng phép nhân với số 5 một cách nhanh chóng. Hôm nay gia sư online Học là Giỏi sẽ cùng bạn khám phá chi tiết bảng nhân 5 nhé.