Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức

Tổng hợp kiến thức phương trình chứa ẩn ở mẫu

schedule.svg

Thứ tư, 2/10/2024 07:05 AM

Tác giả: Admin Hoclagioi

Phương trình chứa ẩn ở mẫu chính là một trong những bài toán khó nhằn đối với những bạn học sinh lớp 8. Ẩn số trong phương trình không chỉ xuất hiện ở những vị trí quen thuộc mà còn nằm sâu trong các mẫu số, đòi hỏi chúng ta phải biết cách để giải. Cùng gia sư online Học là Giỏi khám phá xem làm sao để giải quyết những phương trình này một cách dễ dàng nhé.

Mục lục [Ẩn]

Khái niệm và phân loại 

Khái niệm và phân loại

Bạn đã từng cảm thấy như mình gặp khó khăn giữa những con số khi gặp một phương trình chứa ẩn ở mẫu chưa? Ở phần này sẽ giúp bạn hiểu rõ hơn về khái niệm và cách phân loại các phương trình.

Khái niệm

Phương trình chứa ẩn ở mẫu là những phương trình mà ẩn số không chỉ xuất hiện ở tử số như bình thường, mà lại thêm vào cả ở mẫu số. Điều này khiến việc giải phương trình bị khó khăn hơn so với các phương trình cơ bản. 

Ví dụ:

2x1+3x+2=1\frac{2}{x-1} + \frac{3}{x+2} = 1

Ở đây, ẩn xx không chỉ có mặt trong tử số mà còn nằm trong các mẫu số x1x-1 và x+2x+2

Phân loại 

Tùy thuộc vào dạng của mẫu thức, các phương trình này có thể được chia thành hai loại chính:

Phương trình có mẫu số là biểu thức bậc nhất

Đây là dạng phương trình phổ biến và khá dễ để giải hơn so với các dạng khác. Mẫu số của phương trình này chỉ là các biểu thức bậc nhất, nghĩa là ẩn số xuất hiện với số mũ 1. Dạng này thường dễ xử lý vì chúng ta chỉ cần quy đồng hoặc nhân cả hai vế của phương trình để loại bỏ mẫu số.

Ví dụ:

3x+1=2x2\frac{3}{x+1} = \frac{2}{x-2}

Ở đây, mẫu số là các biểu thức bậc nhất x+1x+1 và x2x-2.

Phương trình có mẫu số là biểu thức bậc hai (hoặc bậc cao hơn)

Loại phương trình này bắt đầu phức tạp hơn một chút vì mẫu số không còn đơn giản là bậc nhất nữa. Thay vào đó, chúng có thể là biểu thức bậc hai hoặc cao hơn. Giải loại phương trình này đòi hỏi chúng ta phải cẩn thận hơn, vì việc quy đồng hoặc loại bỏ mẫu sẽ phức tạp hơn.

Ví dụ:

4x21+5x+2=3\frac{4}{x^2 - 1} + \frac{5}{x + 2} = 3

Mẫu số trong phương trình này bao gồm x21x^2 - 1, một biểu thức bậc hai, và x+2x+2, một biểu thức bậc nhất.

Phương pháp giải 

Phương pháp giải

Việc giải phương trình chứa ẩn ở mẫu thực ra cũng không quá khó nếu bạn nắm vững vài bước cơ bản. Dưới đây là các bước cơ bản để giải phương trình:

Bước 1: Tìm điều kiện xác định

Đây là một bước không thể bỏ qua vì ẩn số nằm ở mẫu, chúng ta phải đảm bảo rằng mẫu số không bao giờ được bằng 0. Bạn chỉ cần nhìn vào mẫu và xác định giá trị nào của ẩn khiến mẫu bằng 0, rồi loại trừ giá trị đó khỏi tập nghiệm. 

Ví dụ, nếu bạn có phương trình như sau:

2x+3x2=5\frac{2x+3}{x-2} = 5

Bạn phải đảm bảo rằng x2x \neq 2 vì nếu x=2x = 2, mẫu sẽ bằng 0, và điều này làm cho phương trình trở nên vô nghĩa.

Bước 2: Quy đồng mẫu số của phương trình rồi khử mẫu.

Bước tiếp theo là xử lý cái mẫu số đó. Bạn không thể làm việc trực tiếp với mẫu số trong phương trình, vì thế bạn sẽ cần quy đồng hoặc loại bỏ mẫu đi. Cách dễ nhất là nhân cả hai vế của phương trình với một biểu thức sao cho tất cả các mẫu số đều biến mất. Thường thì bạn sẽ nhân với bội chung nhỏ nhất của các mẫu số.

Giả sử phương trình là:

2x1+3x+2=1\frac{2}{x-1} + \frac{3}{x+2} = 1

Bội chung nhỏ nhất của x1x-1 và x+2x+2 là (x1)(x+2)(x-1)(x+2). Bạn sẽ nhân cả hai vế của phương trình với (x1)(x+2)(x-1)(x+2) để loại bỏ mẫu số.

Bước 3: Giải phương trình

Khi mẫu số đã được loại bỏ, việc của bạn bây giờ chỉ là giải một phương trình bình thường. Lúc này, phương trình có thể trở thành phương trình bậc nhất hoặc bậc hai, và bạn đã có đủ kỹ năng để giải chúng. 

Ví dụ, sau khi loại bỏ mẫu ở phương trình trước, bạn có thể thu được:

2(x+2)+3(x1)=(x1)(x+2)2(x+2) + 3(x-1) = (x-1)(x+2)

Bây giờ chỉ cần nhân và rút gọn, rồi tìm ra giá trị của xx.

Bước 4: Kết luận

Đừng quên kiểm tra lại nghiệm của mình với điều kiện xác định từ bước đầu tiên. Nếu giá trị của x nào đó làm mẫu số bằng 0, bạn phải loại trừ nó khỏi tập nghiệm. Sau đó bạn có thể kết luận phương trình.

Bài tập vận dụng 

Phương trình chứa ẩn ở mẫu giúp giải quyết rất nhiều bài toán phức tạp, dưới đây mình sẽ giới thiệu hai dạng bài tập cơ bản và nâng cao. 

Bài tập cơ bản

Dưới đây là một phương trình chứa ẩn ở mẫu cơ bản:

2x1+3x+2=1\frac{2}{x-1} + \frac{3}{x+2} = 1

Cách giải:

Bước 1: Điều kiện xác định: chúng ta có mẫu số là x1x-1 và x+2x+2, vì vậy, để phương trình có nghĩa, x1x \neq 1 và x2x \neq -2.

Bước 2: Quy đồng mẫu số Tiếp theo, chúng ta sẽ quy đồng để loại bỏ mẫu số. Ở đây, bội chung nhỏ nhất của hai mẫu là (x1)(x+2)(x-1)(x+2). Bạn nhân cả hai vế của phương trình với biểu thức này:

2(x+2)(x1)(x+2)+3(x1)(x1)(x+2)=(x1)(x+2)\frac{2(x+2)}{(x-1)(x+2)} + \frac{3(x-1)}{(x-1)(x+2)} = (x-1)(x+2)

Bước 3: Rút gọn Sau khi nhân và loại bỏ mẫu số, phương trình trở thành:

2(x+2)+3(x1)=(x1)(x+2)2(x+2) + 3(x-1) = (x-1)(x+2)

Giờ chỉ cần nhân tung các biểu thức ra và rút gọn:

2x+4+3x3=x2+x22x + 4 + 3x - 3 = x^2 + x - 2

 5x+1=x2+x25x + 1 = x^2 + x - 2

Tiếp tục đưa tất cả về một vế:

0=x24x30 = x^2 - 4x - 3

Bước 4: Giải phương trình Đây là phương trình bậc hai đơn giản, bạn có thể giải bằng cách sử dụng công thức nghiệm:

x=(4)±(4)241(3)21x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot (-3)}}{2 \cdot 1}x=4±16+122=4±282=4±272=2±7x = \frac{4 \pm \sqrt{16 + 12}}{2} = \frac{4 \pm \sqrt{28}}{2} = \frac{4 \pm 2\sqrt{7}}{2} = 2 \pm \sqrt{7}

Bước 5: Kiểm tra điều kiện xác định Cuối cùng, đừng quên kiểm tra xem các nghiệm có vi phạm điều kiện xác định không. Ở đây x=2±7x = 2 \pm \sqrt{7} không phải là 11 hay 2-2, vì vậy cả hai nghiệm đều hợp lệ.

Bài tập nâng cao

Bây giờ chúng ta thử một bài phức tạp hơn để thử thách bản thân:

x+1x24+2x2=3x+2\frac{x+1}{x^2 - 4} + \frac{2}{x-2} = \frac{3}{x+2}

Cách giải:

Bước 1: Điều kiện xác định Ta có mẫu số là x24=(x2)(x+2)x^2 - 4 = (x-2)(x+2),  nên điều kiện xác định ở đây là x2x \neq 2 và x2x \neq -2.

Bước 2: Quy đồng mẫu số Mẫu số chung của các phân thức này là (x2)(x+2)(x-2)(x+2). Nhân cả hai vế của phương trình với mẫu số chung này:

(x+1)+2(x+2)=3(x2)(x+1) + 2(x+2) = 3(x-2)

Bước 3: Rút gọn Sau khi loại bỏ mẫu số, phương trình trở thành:

x+1+2x+4=3x6x+1 + 2x + 4 = 3x - 6

Rút gọn hai vế:

3x+5=3x63x + 5 = 3x - 6

Chuyển 3x3x sang cùng một vế:

5=65 = -6

Điều này là vô lý, nên bài toán này không có nghiệm nào cả.

Bài tập thêm

Giải các bài toán sau đây:

a) 3x+12x1=1x21\frac{3}{x+1} - \frac{2}{x-1} = \frac{1}{x^2 - 1}

b) 2xx21+3x+1=1x1\frac{2x}{x^2 - 1} + \frac{3}{x + 1} = \frac{1}{x - 1}

c) 5x3x2+3x=2x\frac{5x - 3}{x^2 + 3x} = \frac{2}{x}

d) 2x2x1x=3x(x1)\frac{2}{x^2 - x} - \frac{1}{x} = \frac{3}{x(x - 1)}

Kết luận

Vậy là chúng ta đã cùng nhau lướt qua dạng bài phương trình chứa ẩn ở mẫu, từ việc kiểm tra điều kiện xác định, quy đồng, cho đến giải quyết chúng một cách gọn gàng. Dù lúc đầu có vẻ phức tạp, nhưng một khi đã nắm rõ cách làm, bạn sẽ thấy những phương trình này chẳng còn phức tạp. Trung tâm gia sư online Học là Giỏi hi vọng bạn sẽ nắm bắt được những kiến thức về phương trình chứa ẩn ở mẫu trong bài này.

 

Chủ đề:

Đăng ký học thử ngay hôm nay

Để con học sớm - Ôn sâu và nhận ưu đãi học phí!

Bài viết liên quan

Kinh nghiệm chọn gia sư toán lớp 11 tại Hà Nội phù hợp nhất
schedule

Thứ tư, 7/5/2025 08:59 AM

Kinh nghiệm chọn gia sư toán lớp 11 tại Hà Nội phù hợp nhất

Nhiều học sinh luôn gặp khó khăn với chương trình toán nâng cao và thiếu các phương pháp học hiệu quả khi vào lớp 11. Vì vậy, việc tìm gia sư toán lớp 11 tại Hà Nội trở thành giải pháp tối ưu giúp học sinh nắm chắc kiến thức và cải thiện thành tích học tập. Gia sư online Học là Giỏi sẽ giúp bạn hiểu cách lựa chọn gia sư toán lớp 11 tại Hà Nội sao cho phù hợp nhất.

Tại sao cần tìm gia sư toán lớp 10 tại Hà Nội?
schedule

Thứ tư, 7/5/2025 07:52 AM

Tại sao cần tìm gia sư toán lớp 10 tại Hà Nội?

Lựa chọn gia sư toán lớp 10 tại Hà Nội giúp con kịp thời tháo gỡ những vướng mắc trong quá trình học, đồng thời tạo tiền đề vững chắc để con tự tin trước những thử thách học tập. Trong bài viết dưới đây, Gia sư online Học là Giỏi sẽ chỉ cho các bậc phụ huynh cách tìm gia sư toán lớp 10 tại Hà Nội sao cho phù hợp nhất nhé.

Làm thế nào để chọn gia sư toán lớp 7 tại Hà Nội?
schedule

Thứ hai, 5/5/2025 10:27 AM

Làm thế nào để chọn gia sư toán lớp 7 tại Hà Nội?

Với học sinh lớp 7, toán học là nền tảng của các môn học liên quan đến tính toán và cũng là bước đệm cho những kỳ thi quan trọng sau này. Gia sư online Học là Giỏi sẽ chia sẻ cách chọn gia sư toán lớp 7 tại Hà Nội trong bài viết dưới đây nhé.

Bí quyết cách học giỏi toán mọi học sinh cần biết
schedule

Thứ hai, 28/4/2025 06:51 AM

Bí quyết cách học giỏi toán mọi học sinh cần biết

Toán học luôn là một môn học quan trọng trong chương trình giáo dục và cả trong cuộc sống hàng ngày. Tuy nhiên, không phải ai cũng dễ dàng nắm vững được các kiến thức và kỹ năng cần thiết để học giỏi môn toán. Hãy cùng gia sư online Học là Giỏi cung cấp những cách học giỏi toán đơn giản, giúp bạn tự tin và thành công trong việc học tập.

Mẹo học bảng nhân 5 cực dễ hiểu cho học sinh tiểu học
schedule

Thứ sáu, 25/4/2025 07:16 AM

Mẹo học bảng nhân 5 cực dễ hiểu cho học sinh tiểu học

Bảng nhân 5 là một phần không thể thiếu trong hệ thống bảng cửu chương hỗ trợ học sinh ghi nhớ và vận dụng phép nhân với số 5 một cách nhanh chóng. Hôm nay gia sư online Học là Giỏi sẽ cùng bạn khám phá chi tiết bảng nhân 5 nhé.

Bí quyết tìm gia sư toán lớp 9 ở Hà Nội uy tín
schedule

Thứ ba, 22/4/2025 03:21 AM

Bí quyết tìm gia sư toán lớp 9 ở Hà Nội uy tín

Lớp 9 là dấu mốc quan trọng quyết định tương lai học tập của học sinh vào cấp 3, đặc biệt là tại Hà Nội, nơi có môi trường giáo dục cạnh tranh khốc liệt. Trong bối cảnh ấy, việc tìm gia sư toán lớp 9 ở Hà Nội trở thành nhu cầu cấp thiết với nhiều phụ huynh nhằm giúp con tự tin bước vào kỳ thi chuyển cấp. Gia sư online Học là Giỏi sẽ cùng bạn tìm hiểu những lưu ý gì khi tìm gia sư toán lớp 9 ở Hà nội nhé.

message.svg zalo.png