Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Phương trình chứa ẩn ở mẫu chính là một trong những bài toán khó nhằn đối với những bạn học sinh lớp 8. Ẩn số trong phương trình không chỉ xuất hiện ở những vị trí quen thuộc mà còn nằm sâu trong các mẫu số, đòi hỏi chúng ta phải biết cách để giải. Cùng gia sư online Học là Giỏi khám phá xem làm sao để giải quyết những phương trình này một cách dễ dàng nhé.
Mục lục [Ẩn]
Bạn đã từng cảm thấy như mình gặp khó khăn giữa những con số khi gặp một phương trình chứa ẩn ở mẫu chưa? Ở phần này sẽ giúp bạn hiểu rõ hơn về khái niệm và cách phân loại các phương trình.
Phương trình chứa ẩn ở mẫu là những phương trình mà ẩn số không chỉ xuất hiện ở tử số như bình thường, mà lại thêm vào cả ở mẫu số. Điều này khiến việc giải phương trình bị khó khăn hơn so với các phương trình cơ bản.
Ví dụ:
Ở đây, ẩn không chỉ có mặt trong tử số mà còn nằm trong các mẫu số và .
Tùy thuộc vào dạng của mẫu thức, các phương trình này có thể được chia thành hai loại chính:
Đây là dạng phương trình phổ biến và khá dễ để giải hơn so với các dạng khác. Mẫu số của phương trình này chỉ là các biểu thức bậc nhất, nghĩa là ẩn số xuất hiện với số mũ 1. Dạng này thường dễ xử lý vì chúng ta chỉ cần quy đồng hoặc nhân cả hai vế của phương trình để loại bỏ mẫu số.
Ví dụ:
Ở đây, mẫu số là các biểu thức bậc nhất và .
Loại phương trình này bắt đầu phức tạp hơn một chút vì mẫu số không còn đơn giản là bậc nhất nữa. Thay vào đó, chúng có thể là biểu thức bậc hai hoặc cao hơn. Giải loại phương trình này đòi hỏi chúng ta phải cẩn thận hơn, vì việc quy đồng hoặc loại bỏ mẫu sẽ phức tạp hơn.
Ví dụ:
Mẫu số trong phương trình này bao gồm , một biểu thức bậc hai, và , một biểu thức bậc nhất.
Việc giải phương trình chứa ẩn ở mẫu thực ra cũng không quá khó nếu bạn nắm vững vài bước cơ bản. Dưới đây là các bước cơ bản để giải phương trình:
Đây là một bước không thể bỏ qua vì ẩn số nằm ở mẫu, chúng ta phải đảm bảo rằng mẫu số không bao giờ được bằng 0. Bạn chỉ cần nhìn vào mẫu và xác định giá trị nào của ẩn khiến mẫu bằng 0, rồi loại trừ giá trị đó khỏi tập nghiệm.
Ví dụ, nếu bạn có phương trình như sau:
Bạn phải đảm bảo rằng vì nếu , mẫu sẽ bằng 0, và điều này làm cho phương trình trở nên vô nghĩa.
Bước tiếp theo là xử lý cái mẫu số đó. Bạn không thể làm việc trực tiếp với mẫu số trong phương trình, vì thế bạn sẽ cần quy đồng hoặc loại bỏ mẫu đi. Cách dễ nhất là nhân cả hai vế của phương trình với một biểu thức sao cho tất cả các mẫu số đều biến mất. Thường thì bạn sẽ nhân với bội chung nhỏ nhất của các mẫu số.
Giả sử phương trình là:
Bội chung nhỏ nhất của và là . Bạn sẽ nhân cả hai vế của phương trình với để loại bỏ mẫu số.
Khi mẫu số đã được loại bỏ, việc của bạn bây giờ chỉ là giải một phương trình bình thường. Lúc này, phương trình có thể trở thành phương trình bậc nhất hoặc bậc hai, và bạn đã có đủ kỹ năng để giải chúng.
Ví dụ, sau khi loại bỏ mẫu ở phương trình trước, bạn có thể thu được:
Bây giờ chỉ cần nhân và rút gọn, rồi tìm ra giá trị của .
Đừng quên kiểm tra lại nghiệm của mình với điều kiện xác định từ bước đầu tiên. Nếu giá trị của x nào đó làm mẫu số bằng 0, bạn phải loại trừ nó khỏi tập nghiệm. Sau đó bạn có thể kết luận phương trình.
Phương trình chứa ẩn ở mẫu giúp giải quyết rất nhiều bài toán phức tạp, dưới đây mình sẽ giới thiệu hai dạng bài tập cơ bản và nâng cao.
Dưới đây là một phương trình chứa ẩn ở mẫu cơ bản:
Bước 1: Điều kiện xác định: chúng ta có mẫu số là và , vì vậy, để phương trình có nghĩa, và .
Bước 2: Quy đồng mẫu số Tiếp theo, chúng ta sẽ quy đồng để loại bỏ mẫu số. Ở đây, bội chung nhỏ nhất của hai mẫu là . Bạn nhân cả hai vế của phương trình với biểu thức này:
Bước 3: Rút gọn Sau khi nhân và loại bỏ mẫu số, phương trình trở thành:
Giờ chỉ cần nhân tung các biểu thức ra và rút gọn:
Tiếp tục đưa tất cả về một vế:
Bước 4: Giải phương trình Đây là phương trình bậc hai đơn giản, bạn có thể giải bằng cách sử dụng công thức nghiệm:
Bước 5: Kiểm tra điều kiện xác định Cuối cùng, đừng quên kiểm tra xem các nghiệm có vi phạm điều kiện xác định không. Ở đây không phải là hay , vì vậy cả hai nghiệm đều hợp lệ.
Bây giờ chúng ta thử một bài phức tạp hơn để thử thách bản thân:
Bước 1: Điều kiện xác định Ta có mẫu số là , nên điều kiện xác định ở đây là và .
Bước 2: Quy đồng mẫu số Mẫu số chung của các phân thức này là . Nhân cả hai vế của phương trình với mẫu số chung này:
Bước 3: Rút gọn Sau khi loại bỏ mẫu số, phương trình trở thành:
Rút gọn hai vế:
Chuyển sang cùng một vế:
Điều này là vô lý, nên bài toán này không có nghiệm nào cả.
Giải các bài toán sau đây:
a)
b)
c)
d)
Vậy là chúng ta đã cùng nhau lướt qua dạng bài phương trình chứa ẩn ở mẫu, từ việc kiểm tra điều kiện xác định, quy đồng, cho đến giải quyết chúng một cách gọn gàng. Dù lúc đầu có vẻ phức tạp, nhưng một khi đã nắm rõ cách làm, bạn sẽ thấy những phương trình này chẳng còn phức tạp. Trung tâm gia sư online Học là Giỏi hi vọng bạn sẽ nắm bắt được những kiến thức về phương trình chứa ẩn ở mẫu trong bài này.
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
STEM là gì? Lợi ích và ứng dụng trong giáo dục hiện đại
Thứ ba, 12/8/2025Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Bảng tuần hoàn nguyên tố hóa học theo chương trình mới
Thứ hai, 15/4/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ hai, 25/8/2025 09:45 AM
Tập hợp con là gì? Các trường hợp đặc biệt của tập hợp con
Khái niệm tập hợp hỗ trợ học sinh làm quen với cách mô tả và phân loại đối tượng trong môn toán cấp 3. Trong đó, tập hợp con là gì luôn là câu hỏi thường gặp bởi đây là kiến thức cơ bản nhưng lại có ứng dụng trong nhiều dạng bài tập. Học là Giỏi sẽ giúp bạn nắm vững khái niệm, tính chất và cách vận dụng tập hợp con một cách rõ ràng, dễ hiểu.
Thứ hai, 25/8/2025 07:42 AM
Tập hợp rỗng là gì? Các tính chất của tập hợp rỗng
Trong toán học, khái niệm tập hợp rỗng thường gây thắc mắc cho nhiều học sinh khi mới làm quen. Hiểu đúng về tập hợp rỗng giúp các em sẽ tránh được những nhầm lẫn thường gặp trong quá trình giải toán, đặc biệt ở phần chứng minh, so sánh và vận dụng tập hợp trong các bài tập nâng cao. Học là Giỏi sẽ giúp bạn hiểu rõ hơn định nghĩa và các tính chất về tập hợp rỗng thông qua bài viết dưới đây nhé.
Thứ hai, 18/8/2025 08:35 AM
Bí quyết luyện toán ôn thi vào 10 dễ đạt điểm cao
Toán ôn thi vào 10 luôn là nỗi lo lớn của nhiều học sinh khi kỳ thi chuyển cấp. Đây là môn học đòi hỏi tư duy logic, khả năng phân tích. Nhiều em dù chăm chỉ học nhưng vẫn gặp khó khăn trong việc hệ thống kiến thức và làm quen với dạng đề thi. Học là GIỏi sẽ giúp các em có định hướng rõ ràng, tự tin hơn trên hành trình đạt điểm cao và chinh phục môn toán ôn thi vào 10 trong bài viết này nhé.
Thứ sáu, 8/8/2025 03:59 AM
Hướng dẫn áp dụng dấu hiệu chia hết cho 11 hiệu quả
Trong toán học, ngoài việc thực hiện phép chia thông thường còn có những mẹo giúp ta nhận biết nhanh dấu hiệu chia hết cho 11. Học là Giỏi sẽ giúp bạn hiểu rõ quy tắc, cách vận dụng và thực hành qua các bài tập cơ bản đến nâng cao giúp bạn nắm chắc kiến thức và tự tin khi gặp dạng bài này nhé.
Thứ năm, 7/8/2025 09:46 AM
Cách nhận biết dấu hiệu chia hết cho 8 đơn giản
Dấu hiệu chia hết cho 8 là một kiến thức xuất hiện trong các dạng đề kiểm tra hoặc ở nhiều bài tập. Học là Giỏi sẽ giúp các bạn nắm vững các dạng toán về dấu hiệu chia hết cho 8 để dễ dàng thực hiện phép chia phức tạp nhé.
Thứ tư, 6/8/2025 06:57 AM
Tổng hợp kiến thức về dấu hiệu chia hết cho 6 cấp 2
Trong quá trình tính toán cơ bản, việc nắm vững dấu hiệu chia hết cho 6 giúp học sinh rút gọn phép chia nhanh hơn trong việc giải toán có lời giải, đặc biệt là các bài toán tìm số hoặc phân tích số. Học là Giỏi sẽ giúp các bạn học sinh nắm được dấu hiệu chia hết cho 6 và các dạng bài tập qua bài viết dưới đây nhé.