Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức
Khi nhắc đến hình học, các trường hợp đồng dạng của tam giác luôn là một chủ đề gợi nhiều sự quan tâm đối với các em học sinh cấp 2. Tam giác đồng dạng giúp chúng ta hiểu rõ hơn về sự tương quan giữa các yếu tố hình học và cách tiếp cận đơn giản hơn trong nhiều bài toán phức tạp. Hãy cùng gia sư online Học là Giỏi khám phá kỹ hơn về các cách nhận biết và phân loại tam giác đồng dạng này nhé.
Mục lục [Ẩn]
Có nhiều phương pháp để xác định sự đồng dạng, chẳng hạn như hai vật thể có cùng kích thước và hình dạng sẽ được xem là đồng dạng. Tương tự, trong hình học, tam giác đồng dạng là hai tam giác mà các góc tương ứng bằng nhau và các cạnh tương ứng tỉ lệ với nhau.
Điểm lưu ý là hình dạng không thay đổi, chỉ có kích thước khác nhau. Hai tam giác đồng dạng không cần có kích thước giống hệt nhau, nhưng chúng có cùng cấu trúc góc và tỷ lệ các cạnh.
Việc nhận biết các trường hợp tam giác đồng dạng hay không có thể dựa trên ba trường hợp cơ bản. Đây được xem là ba cách xác định xem liệu hai tam giác có giống nhau về hình dạng.
Cạnh - cạnh - cạnh được hiểu là nếu ba cặp cạnh của hai tam giác có tỉ lệ bằng nhau, thì hai tam giác đó sẽ đồng dạng. Không cần phải kiểm tra góc hay bất kỳ yếu tố nào khác – chỉ cần ba cạnh.
Nếu bạn có một tam giác được phóng to hoặc thu nhỏ mà vẫn giữ nguyên tỷ lệ các cạnh, bạn sẽ tạo ra một tam giác đồng dạng với tam giác ban đầu. Chỉ cần tỷ lệ giữa các cạnh là chúng sẽ giống nhau về hình dáng, dù lớn hay nhỏ.
Ví dụ:
Giả sử bạn có tam giác ABC với các cạnh lần lượt là 4 cm, 5 cm, và 6 cm. Còn tam giác DEF có các cạnh tương ứng là 8 cm, 10 cm, và 12 cm. Chứng minh 2 tam giác đồng dạng.
Chúng ta xét tính tỷ lệ giữa các cạnh tương ứng:
AB/DE = 4/8 = 1/2
BC/EF = 5/10 = 1/2
CA/FD = 6/12 = 1/2
Kết quả cho thấy tất cả các cặp cạnh đều có cùng tỷ lệ là 1/2, vậy nên hai tam giác này đồng dạng theo trường hợp Cạnh - Cạnh - Cạnh.
Cạnh - góc - cạnh có nghĩa là hai tam giác có hai cặp cạnh tương ứng tỉ lệ với nhau và góc kẹp giữa hai cạnh đó bằng nhau, thì hai tam giác đó đồng dạng. Chỉ cần xét hai cạnh và một góc ở giữa đủ để kết luận trường hợp đồng dạng.
Những điều kiện này giúp bạn có thể dễ dàng nhận biết liệu hai tam giác có đồng dạng hay không mà không phải đi tính tất cả các góc và cạnh.
Ví dụ:
Có tam giác ABC với cạnh AB = 6 cm, cạnh AC = 8 cm, và góc A = 60°. Có một tam giác DEF với cạnh DE = 9 cm, cạnh DF = 12 cm, và góc D = 60°. Xét trường hợp đồng dạng trong trường hợp này.
Đầu tiên, chúng ta tính tỷ lệ của các cặp cạnh tương ứng:
AB/DE = 6/9 = 2/3
AC/DF = 8/12 = 2/3
Cả hai cặp cạnh đều có cùng tỷ lệ là 2/3. Tiếp theo, chúng ta kiểm tra góc kẹp giữa hai cạnh đó, và ở đây góc A = góc D = 60°. Vậy, hai tam giác này đồng dạng theo trường hợp Cạnh - Góc - Cạnh.
Nếu hai tam giác có hai góc tương ứng bằng nhau, thì tam giác thứ ba cũng sẽ tự động bằng nhau (vì tổng ba góc trong một tam giác luôn là 180 độ). Và khi đó, hai tam giác này sẽ đồng dạng, bất kể kích thước của chúng khác nhau thế nào.
Ví dụ:
Giả sử bạn có một tam giác ABC với các góc là 40°, 70°, và 70°. Bạn so sánh nó với tam giác DEF có góc D = 40° và góc E = 70°. Chỉ cần nhìn vào đây thôi, chúng ta đã thấy rằng tam giác DEF có hai góc tương ứng bằng với hai góc của tam giác ABC.
Vì cả hai tam giác này có hai góc tương ứng bằng nhau, bạn có thể khẳng định ngay rằng chúng đồng dạng theo trường hợp Góc - Góc.
Hai tam giác đồng dạng đều có những tính chất khác nhau liên quan đến phương pháp tính tỉ số. Dưới đây là 2 tính chất cần lưu ý khi làm bài:
Các cạnh tương ứng của hai tam giác đồng dạng luôn có tỉ số bằng nhau. Nếu bạn lấy một cặp cạnh từ tam giác nhỏ và tam giác lớn, chia chúng ra, thì tỉ số của các cặp cạnh khác cũng sẽ bằng nhau.
Không chỉ dừng lại ở các cạnh, đường cao, đường trung tuyến, và đường phân giác của hai tam giác đồng dạng cũng tuân theo quy tắc tương tự. Tất cả chúng đều chia theo cùng một tỷ lệ. Như vậy, dù bạn có phóng to hay thu nhỏ tam giác, tất cả các yếu tố hình học cơ bản của nó cũng sẽ thay đổi tỷ lệ một cách đồng bộ.
Nếu hai tam giác có tỉ số các cạnh tương ứng là k, thì tỉ số diện tích của chúng sẽ là .
Nói một cách dễ hiểu, nếu bạn phóng to một tam giác lên gấp đôi, thì diện tích của nó sẽ lớn hơn 4 lần (vì = 4). Tương tự, nếu bạn phóng to tam giác lên gấp ba lần, diện tích sẽ tăng gấp 9 lần (bởi vì = 9).
Ví dụ
Tam giác ABC với các cạnh lần lượt là 4 cm, 5 cm, và 6 cm, và tam giác DEF đồng dạng với ABC có các cạnh tương ứng là 8 cm, 10 cm, và 12 cm. Tỉ số các cạnh tương ứng của hai tam giác này là 2 (bởi vì 8/4 = 10/5 = 12/6 = 2).
Vậy, tỉ số diện tích của hai tam giác sẽ là = 4. Điều này có nghĩa là diện tích của tam giác DEF sẽ gấp 4 lần diện tích của tam giác ABC.
Để nắm rõ kiến thức cơ bản trên thì phải luyện tập thường xuyên với các dạng bài tập. Dưới đây là các dạng cơ bản và nâng cao mà bạn có thể tham khảo.
Bài 1: Tứ giác ABCD có AB = 2cm; BC = 6cm; CD = 8cm; DA = 3cm và BD = 4cm. Chứng minh rằng:
a) Δ BAD ∼ Δ DBC
b) ABCD là hình thang
Lời giải:
a) Ta có:
BA/BD = AD/BC = BD/CD = 1/2 ⇒ Δ BAD ∼ Δ DBC ( c - c - c )
b) Ta có: Δ BAD ∼ Δ DBC
⇒ ABDˆ = BDCˆ nên AB//CD
⇒ ABCD là hình thang.
Bài 2: Trên một cạnh của một góc xOy ( Ox ≠ Oy ) đặt các đoạn thẳng OA = 5cm, OB = 16cm Trên cạnh thứ hai của góc đó đặt các đoạn thẳng OC = 8cm, OD = 10cm.
a) Chứng minh Δ OCB ∼ Δ OAD
b) Gọi I là giao điểm của các cạnh AD và BC. Chứng minh rằng Δ IAB và Δ ICD có các góc bằng nhau từng đôi một.
Lời giải:
a) Xét Δ OCB và Δ OAD có:
⇒ Δ OCB ∼ Δ OAD ( c - g - c )
b) Ta có: Δ OCB ∼ Δ OAD
⇒ hay
Mà (vì đối đỉnh) ⇒
Bài 3: Cho ΔABC, điểm O ở bên trong tam giác. Gọi theo thứ tự là trung điểm của OA, OB, OC.
a) Chứng minh rằng ΔABC đồng dạng với ΔMNP.
b) Tính chu vi của ΔMNP biết chu vi của ΔABC bằng 88cm.
Lời giải:
a) Trong ΔOAB, ta có :
M là trung điểm AO(gt)
N là trung điểm BO (gt)
⇒MN là đường trung bình ΔAOB
⇒
Trong ΔOAC, ta có :
M là trung điểm AO(gt)
P là trung điểm CO (gt)
⇒MP là đường trung bình ΔOAC
⇒
Trong ΔOBC, ta có :
N là trung điểm BO(gt)
P là trung điểm CO (gt)
⇒NP là đường trung bình ΔOBC
⇒
Vậy ta được:
b) Ta có:
Bài 4: Cho ΔABC có AB = 4cm, AC = 5cm, BC = 6cm. Trên tia đối của tia AB lấy điểm D sao cho AD = 5cm.
a. Tam giác ABC đồng dạng với tam giác nào ?
b. Tính độ dài CD.
c. Chứng minh rằng
Lời giải:
a. Ta có:
Qua việc tìm hiểu về các trường hợp đồng dạng của tam giác, ta có thể thấy rằng hình học mang lại những mối liên kết thú vị giữa các hình dạng. Với những kiến thức vừa học, trung tâm gia sư online Học là Giỏi hy vọng rằng bạn đã có thể tự tin phân biệt và áp dụng tam giác đồng dạng một cách dễ dàng trong các bài toán hình học.
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết xem nhiều
Khám phá các cách tính cạnh huyền tam giác vuông
Thứ ba, 24/9/2024Bí kíp chinh phục các hằng đẳng thức mở rộng
Thứ tư, 14/8/2024Tổng hợp đầy đủ về công thức lượng giác
Thứ tư, 29/5/2024Thể thơ bảy chữ: Từ truyền thống đến hiện đại
Thứ tư, 29/5/2024Thể thơ song thất lục bát trong văn chương Việt Nam
Thứ ba, 28/5/2024Khóa học liên quan
Khóa Luyện thi chuyển cấp 9 vào 10 môn Toán
›
Đánh giá năng lực miễn phí - Toán lớp 11
›
Khóa học tốt trên lớp - Toán lớp 11
›
Khóa luyện thi cấp tốc - Toán lớp 11
›
Khóa Tổng ôn hè - Toán lớp 11
›
Đăng ký học thử ngay hôm nay
Để con học sớm - Ôn sâu và nhận ưu đãi học phí!
Bài viết liên quan
Thứ tư, 7/5/2025 08:59 AM
Kinh nghiệm chọn gia sư toán lớp 11 tại Hà Nội phù hợp nhất
Nhiều học sinh luôn gặp khó khăn với chương trình toán nâng cao và thiếu các phương pháp học hiệu quả khi vào lớp 11. Vì vậy, việc tìm gia sư toán lớp 11 tại Hà Nội trở thành giải pháp tối ưu giúp học sinh nắm chắc kiến thức và cải thiện thành tích học tập. Gia sư online Học là Giỏi sẽ giúp bạn hiểu cách lựa chọn gia sư toán lớp 11 tại Hà Nội sao cho phù hợp nhất.
Thứ tư, 7/5/2025 07:52 AM
Tại sao cần tìm gia sư toán lớp 10 tại Hà Nội?
Lựa chọn gia sư toán lớp 10 tại Hà Nội giúp con kịp thời tháo gỡ những vướng mắc trong quá trình học, đồng thời tạo tiền đề vững chắc để con tự tin trước những thử thách học tập. Trong bài viết dưới đây, Gia sư online Học là Giỏi sẽ chỉ cho các bậc phụ huynh cách tìm gia sư toán lớp 10 tại Hà Nội sao cho phù hợp nhất nhé.
Thứ hai, 5/5/2025 10:27 AM
Làm thế nào để chọn gia sư toán lớp 7 tại Hà Nội?
Với học sinh lớp 7, toán học là nền tảng của các môn học liên quan đến tính toán và cũng là bước đệm cho những kỳ thi quan trọng sau này. Gia sư online Học là Giỏi sẽ chia sẻ cách chọn gia sư toán lớp 7 tại Hà Nội trong bài viết dưới đây nhé.
Thứ hai, 28/4/2025 06:51 AM
Bí quyết cách học giỏi toán mọi học sinh cần biết
Toán học luôn là một môn học quan trọng trong chương trình giáo dục và cả trong cuộc sống hàng ngày. Tuy nhiên, không phải ai cũng dễ dàng nắm vững được các kiến thức và kỹ năng cần thiết để học giỏi môn toán. Hãy cùng gia sư online Học là Giỏi cung cấp những cách học giỏi toán đơn giản, giúp bạn tự tin và thành công trong việc học tập.
Thứ sáu, 25/4/2025 07:16 AM
Mẹo học bảng nhân 5 cực dễ hiểu cho học sinh tiểu học
Bảng nhân 5 là một phần không thể thiếu trong hệ thống bảng cửu chương hỗ trợ học sinh ghi nhớ và vận dụng phép nhân với số 5 một cách nhanh chóng. Hôm nay gia sư online Học là Giỏi sẽ cùng bạn khám phá chi tiết bảng nhân 5 nhé.
Thứ ba, 22/4/2025 03:21 AM
Bí quyết tìm gia sư toán lớp 9 ở Hà Nội uy tín
Lớp 9 là dấu mốc quan trọng quyết định tương lai học tập của học sinh vào cấp 3, đặc biệt là tại Hà Nội, nơi có môi trường giáo dục cạnh tranh khốc liệt. Trong bối cảnh ấy, việc tìm gia sư toán lớp 9 ở Hà Nội trở thành nhu cầu cấp thiết với nhiều phụ huynh nhằm giúp con tự tin bước vào kỳ thi chuyển cấp. Gia sư online Học là Giỏi sẽ cùng bạn tìm hiểu những lưu ý gì khi tìm gia sư toán lớp 9 ở Hà nội nhé.