Trang chủ › Cẩm nang học tập › Cẩm nang kiến thức

Nhận biết các trường hợp đồng dạng của tam giác

schedule.svg

Thứ sáu, 18/10/2024 09:29 AM

Tác giả: Admin Hoclagioi

Khi nhắc đến hình học, các trường hợp đồng dạng của tam giác luôn là một chủ đề gợi nhiều sự quan tâm đối với các em học sinh cấp 2. Tam giác đồng dạng giúp chúng ta hiểu rõ hơn về sự tương quan giữa các yếu tố hình học và cách tiếp cận đơn giản hơn trong nhiều bài toán phức tạp. Hãy cùng gia sư online Học là Giỏi khám phá kỹ hơn về các cách nhận biết và phân loại tam giác đồng dạng này nhé.

Mục lục [Ẩn]

Khái niệm và phân loại tam giác đồng dạng:

Có nhiều phương pháp để xác định sự đồng dạng, chẳng hạn như hai vật thể có cùng kích thước và hình dạng sẽ được xem là đồng dạng. Tương tự, trong hình học, tam giác đồng dạng là hai tam giác mà các góc tương ứng bằng nhau và các cạnh tương ứng tỉ lệ với nhau. 

Điểm lưu ý là hình dạng không thay đổi, chỉ có kích thước khác nhau. Hai tam giác đồng dạng không cần có kích thước giống hệt nhau, nhưng chúng có cùng cấu trúc góc và tỷ lệ các cạnh. 

Khái niệm và phân loại tam giác đồng dạng

Các trường hợp đồng dạng của tam giác

Việc nhận biết các trường hợp tam giác đồng dạng hay không có thể dựa trên ba trường hợp cơ bản. Đây được xem là ba cách xác định xem liệu hai tam giác có giống nhau về hình dạng.

Trường hợp đồng dạng cạnh - cạnh - cạnh:

Cạnh - cạnh - cạnh được hiểu là nếu ba cặp cạnh của hai tam giác có tỉ lệ bằng nhau, thì hai tam giác đó sẽ đồng dạng. Không cần phải kiểm tra góc hay bất kỳ yếu tố nào khác – chỉ cần ba cạnh.

Nếu bạn có một tam giác được phóng to hoặc thu nhỏ mà vẫn giữ nguyên tỷ lệ các cạnh, bạn sẽ tạo ra một tam giác đồng dạng với tam giác ban đầu. Chỉ cần tỷ lệ giữa các cạnh là chúng sẽ giống nhau về hình dáng, dù lớn hay nhỏ.

Ví dụ:
Giả sử bạn có tam giác ABC với các cạnh lần lượt là 4 cm, 5 cm, và 6 cm. Còn tam giác DEF có các cạnh tương ứng là 8 cm, 10 cm, và 12 cm. Chứng minh 2 tam giác đồng dạng.

Chúng ta xét tính tỷ lệ giữa các cạnh tương ứng:

AB/DE = 4/8 = 1/2

BC/EF = 5/10 = 1/2

CA/FD = 6/12 = 1/2

Kết quả cho thấy tất cả các cặp cạnh đều có cùng tỷ lệ là 1/2, vậy nên hai tam giác này đồng dạng theo trường hợp Cạnh - Cạnh - Cạnh.

Trường hợp đồng dạng cạnh - góc - cạnh:

Cạnh - góc - cạnh có nghĩa là hai tam giác có hai cặp cạnh tương ứng tỉ lệ với nhau và góc kẹp giữa hai cạnh đó bằng nhau, thì hai tam giác đó đồng dạng. Chỉ cần xét hai cạnh và một góc ở giữa đủ để kết luận trường hợp đồng dạng. 

Những điều kiện này giúp bạn có thể dễ dàng nhận biết liệu hai tam giác có đồng dạng hay không mà không phải đi tính tất cả các góc và cạnh. 

Ví dụ:
Có tam giác ABC với cạnh AB = 6 cm, cạnh AC = 8 cm, và góc A = 60°. Có một tam giác DEF với cạnh DE = 9 cm, cạnh DF = 12 cm, và góc D = 60°. Xét trường hợp đồng dạng trong trường hợp này.

Đầu tiên, chúng ta tính tỷ lệ của các cặp cạnh tương ứng:

AB/DE = 6/9 = 2/3

AC/DF = 8/12 = 2/3

Cả hai cặp cạnh đều có cùng tỷ lệ là 2/3. Tiếp theo, chúng ta kiểm tra góc kẹp giữa hai cạnh đó, và ở đây góc A = góc D = 60°. Vậy, hai tam giác này đồng dạng theo trường hợp Cạnh - Góc - Cạnh.

Trường hợp đồng dạng góc - góc:

Nếu hai tam giác có hai góc tương ứng bằng nhau, thì tam giác thứ ba cũng sẽ tự động bằng nhau (vì tổng ba góc trong một tam giác luôn là 180 độ). Và khi đó, hai tam giác này sẽ đồng dạng, bất kể kích thước của chúng khác nhau thế nào.

Ví dụ:
Giả sử bạn có một tam giác ABC với các góc là 40°, 70°, và 70°. Bạn so sánh nó với tam giác DEF có góc D = 40° và góc E = 70°. Chỉ cần nhìn vào đây thôi, chúng ta đã thấy rằng tam giác DEF có hai góc tương ứng bằng với hai góc của tam giác ABC.

Vì cả hai tam giác này có hai góc tương ứng bằng nhau, bạn có thể khẳng định ngay rằng chúng đồng dạng theo trường hợp Góc - Góc. 

Tính chất của hai tam giác đồng dạng:

Hai tam giác đồng dạng đều có những tính chất khác nhau liên quan đến phương pháp tính tỉ số. Dưới đây là 2 tính chất cần lưu ý khi làm bài:

Tính chất về tỉ số các yếu tố tương ứng

Các cạnh tương ứng của hai tam giác đồng dạng luôn có tỉ số bằng nhau. Nếu bạn lấy một cặp cạnh từ tam giác nhỏ và tam giác lớn, chia chúng ra, thì tỉ số của các cặp cạnh khác cũng sẽ bằng nhau. 

Không chỉ dừng lại ở các cạnh, đường cao, đường trung tuyến, và đường phân giác của hai tam giác đồng dạng cũng tuân theo quy tắc tương tự. Tất cả chúng đều chia theo cùng một tỷ lệ. Như vậy, dù bạn có phóng to hay thu nhỏ tam giác, tất cả các yếu tố hình học cơ bản của nó cũng sẽ thay đổi tỷ lệ một cách đồng bộ.

Tính chất về tỉ số diện tích

Nếu hai tam giác có tỉ số các cạnh tương ứng là k, thì tỉ số diện tích của chúng sẽ là k2.

Nói một cách dễ hiểu, nếu bạn phóng to một tam giác lên gấp đôi, thì diện tích của nó sẽ lớn hơn 4 lần (vì 22 = 4). Tương tự, nếu bạn phóng to tam giác lên gấp ba lần, diện tích sẽ tăng gấp 9 lần (bởi vì 32 = 9). 

Ví dụ 

Tam giác ABC với các cạnh lần lượt là 4 cm, 5 cm, và 6 cm, và tam giác DEF đồng dạng với ABC có các cạnh tương ứng là 8 cm, 10 cm, và 12 cm. Tỉ số các cạnh tương ứng của hai tam giác này là 2 (bởi vì 8/4 = 10/5 = 12/6 = 2).

Vậy, tỉ số diện tích của hai tam giác sẽ là 22 = 4. Điều này có nghĩa là diện tích của tam giác DEF sẽ gấp 4 lần diện tích của tam giác ABC.

Bài tập hai tam giác đồng dạng

Để nắm rõ kiến thức cơ bản trên thì phải luyện tập thường xuyên với các dạng bài tập. Dưới đây là các dạng cơ bản và nâng cao mà bạn có thể tham khảo.

Bài tập cơ bản

Bài 1: Tứ giác ABCD có AB = 2cm; BC = 6cm; CD = 8cm; DA = 3cm và BD = 4cm. Chứng minh rằng:

a) Δ BAD ∼ Δ DBC

b) ABCD là hình thang

Tứ giác ABCD có AB = 2cm; BC = 6cm; CD = 8cm; DA = 3cm và BD = 4cm. Chứng minh rằng:

Lời giải:

a) Ta có:

BA/BD = AD/BC = BD/CD = 1/2 ⇒ Δ BAD ∼ Δ DBC ( c - c - c )

b) Ta có: Δ BAD ∼ Δ DBC

⇒ ABDˆ = BDCˆ nên AB//CD

⇒ ABCD là hình thang.

Bài 2: Trên một cạnh của một góc xOy ( Ox ≠ Oy ) đặt các đoạn thẳng OA = 5cm, OB = 16cm Trên cạnh thứ hai của góc đó đặt các đoạn thẳng OC = 8cm, OD = 10cm.

a) Chứng minh Δ OCB ∼ Δ OAD

b) Gọi I là giao điểm của các cạnh AD và BC. Chứng minh rằng Δ IAB và Δ ICD có các góc bằng nhau từng đôi một.

Trên một cạnh của một góc xOy ( Ox ≠ Oy ) đặt các đoạn thẳng OA = 5cm, OB = 16cm Trên cạnh thứ hai của góc đó đặt các đoạn thẳng OC = 8cm, OD = 10cm.

Lời giải:

a) Xét Δ OCB và Δ OAD có:

O^ là góc trùng nhau OAOD=OCOB=12OAOC=ODOB

⇒ Δ OCB ∼ Δ OAD ( c - g - c )

b) Ta có: Δ OCB ∼ Δ OAD

⇒ ADO^ = CBO^  hay IDC^ = IBA^

Mà CID^ = AIB^(vì đối đỉnh) ⇒ ICD^ = IAB^

Bài tập nâng cao

Bài 3: Cho ΔABC, điểm O ở bên trong tam giác. Gọi theo thứ tự là trung điểm của OA, OB, OC.

a) Chứng minh rằng ΔABC đồng dạng với ΔMNP.

b) Tính chu vi của ΔMNP biết chu vi của ΔABC bằng 88cm.

Cho ΔABC, điểm O ở bên trong tam giác. Gọi theo thứ tự là trung điểm của OA, OB, OC.

Lời giải: 

a) Trong ΔOAB, ta có :

M là trung điểm AO(gt)

N là trung điểm BO (gt)

⇒MN là đường trung bình ΔAOB

MN=12AB MNAB=12

Trong ΔOAC, ta có :

M là trung điểm AO(gt)

P là trung điểm CO (gt)

⇒MP là đường trung bình ΔOAC

MP=12AC MPAC=12

Trong ΔOBC, ta có :

N là trung điểm BO(gt)

P là trung điểm CO (gt)

⇒NP là đường trung bình ΔOBC

NP=12BC NPBC=12

Vậy ta được: 

MNAB=NPBC=PMCA=12 MNP~ABC(c-c-c) vi k=12

b) Ta có: 

PMNPPABC=12PMNP=12PABC=12.88=44cm

Bài 4: Cho ΔABC có AB = 4cm, AC = 5cm, BC = 6cm. Trên tia đối của tia AB lấy điểm D sao cho AD = 5cm.

a. Tam giác ABC đồng dạng với tam giác nào ?

b. Tính độ dài CD.

c. Chứng minh rằng BAC^=2ACB^

Cho ΔABC có AB = 4cm, AC = 5cm, BC = 6cm. Trên tia đối của tia AB lấy điểm D sao cho AD = 5cm.

Lời giải:

a. Ta có:

ABCB=46=23 và BCBD=64+5=23 ABCB=BCBD=23 Vi hai tam giác ABC vàCBD, ta có: B^ là góc chung ABCB=BCBD(cmt) ABC~CBD(c-g-c). 

b. Vì ABC và CBD (cmt) nên ACCD=ABCB(cp cnh tương ng t l) CD=AC.CBAB=5.64=7,5cm Vy CD=7,5cm c. Vì ABC và CBD(cmt) nên BAC^ =BCD^. Nhn xét rng: BADA=45, BCDC=67,5=45 BADA=BCDCCA là đưng phân giác ca góc BCD^ BCD^=2ACB^ BAC^=2ACB^. 

Kết luận

Qua việc tìm hiểu về các trường hợp đồng dạng của tam giác, ta có thể thấy rằng hình học mang lại những mối liên kết thú vị giữa các hình dạng. Với những kiến thức vừa học, trung tâm gia sư online Học là Giỏi hy vọng rằng bạn đã có thể tự tin phân biệt và áp dụng tam giác đồng dạng một cách dễ dàng trong các bài toán hình học.

Chủ đề:

Đăng ký học thử ngay hôm nay

Để con học sớm - Ôn sâu và nhận ưu đãi học phí!

Bài viết liên quan

Đáp án, đề thi giữa kì 1 toán 9 Kết nối tri thức 2025-2026
schedule

Thứ năm, 23/10/2025 09:44 AM

Đáp án, đề thi giữa kì 1 toán 9 Kết nối tri thức 2025-2026

Trong quá trình ôn tập và chuẩn bị cho kỳ thi, việc tham khảo Đề thi giữa kì 1 Toán 9 Kết nối tri thức là vô cùng cần thiết giúp học sinh rèn luyện kỹ năng làm bài. Bộ đề thi được Học là Giỏi tổng hợp và biên soạn bám sát chương trình mới, giúp các em làm quen với cấu trúc đề, dạng câu hỏi thường gặp và cách phân bổ thời gian hợp lý trong phòng thi.

Một số bài toán về đại lượng tỉ lệ thuận kèm lời giải
schedule

Thứ ba, 21/10/2025 08:25 AM

Một số bài toán về đại lượng tỉ lệ thuận kèm lời giải

Trong chương trình Toán 7, đại lượng tỉ lệ thuận là một nội dung quan trọng giúp học sinh hiểu rõ mối quan hệ giữa hai yếu tố thay đổi cùng chiều. Học sinh cần nắm được một số bài toán về đại lượng tỉ lệ thuận để giải được đa dạng các dạng bài thường xuất hiện trong các đề thi, đề kiểm tra. Hãy cùng Học là Giỏi tìm hiểu một số bài toán về đại lượng tỉ lệ thuận qua bài viết dưới đây!

Tổng hợp kiến thức Toán lớp 5 đầy đủ nhất
schedule

Thứ ba, 14/10/2025 07:19 AM

Tổng hợp kiến thức Toán lớp 5 đầy đủ nhất

Chương trình Toán lớp 5 là bước chuyển quan trọng tạo nền tảng cho môn Toán ở bậc THCS. Trong chương trình Toán 5, học sinh được làm quen với nhiều dạng kiến thức mới như phân số, số thập phân, tỉ số, tỉ lệ, các bài toán thực tế và hình khối. Học là Giỏi đã tổng hợp các kiến thức trọng tâm của chương trình Toán lớp 5 dưới dạng trực quan, giúp học sinh dễ theo dõi và ôn tập. Hãy cùng ôn tập về phần kiến thức này qua bài tổng hợp kiến thức Toán lớp 5 dưới đây.

Tổng hợp kiến thức Toán 3 quan trọng
schedule

Thứ ba, 14/10/2025 03:10 AM

Tổng hợp kiến thức Toán 3 quan trọng

Toán lớp 3 là môn học cung cấp nền tảng từ những kiến thức cơ bản nhất, giúp học sinh rèn luyện tư duy và khả năng tính toán. Để học tốt, các con cần ghi nhớ và hiểu rõ những công thức từ bảng nhân chia, quy tắc tính toán, lý thuyết cơ bản về hình học và giải được các bài toán có lời văn. Bộ tổng hợp kiến thức Toán 3 quan trọng dưới đây có tổng hợp đầy đủ các công thức và nội dung cần nhớ với các quy tắc và ví dụ minh họa dễ hiểu, giúp học sinh dễ dàng hệ thống kiến thức và nắm được các nội dung cốt lõi.

Tổng hợp kiến thức Toán lớp 4 dễ hiểu nhất
schedule

Thứ hai, 13/10/2025 10:28 AM

Tổng hợp kiến thức Toán lớp 4 dễ hiểu nhất

Toán lớp 4 là cơ sở kiến thức quan trọng giúp học sinh củng cố nền tảng tư duy và các kỹ năng tính toán, bổ trợ cho việc học các kiến thức Toán học phức tạp hơn. Tuy nhiên, với nhiều kiến thức và dạng bài khác nhau, các em có thể gặp khó khăn trong việc ghi nhớ các công thức. Hiểu được điều đó, Học là Giỏi đã tổng hợp toàn bộ kiến thức trọng tâm Toán lớp 4 qua những bảng tóm tắt ngắn gọn, giúp học sinh có thể học nhanh, nhớ lâu và áp dụng hiệu quả các công thức Toán 4 vào giải bài tập. Hãy cùng tìm hiểu tất cả kiến thức Toán 4 qua bài viết dưới đây!

Tia là gì? Khái niệm cơ bản và tính chất trong hình học
schedule

Thứ năm, 28/8/2025 04:23 AM

Tia là gì? Khái niệm cơ bản và tính chất trong hình học

Trong hình học, một trong những khái niệm mà học sinh cần nắm vững chính là tia. Nhiều bạn thường đặt câu hỏi: tia là gì và cách phân biệt nó với đoạn thẳng hay đường thẳng như thế nào? Học là Giỏi sẽ giúp bạn tìm hiểu chi tiết về tia là gì, các tính chất quan trọng và những bài tập minh họa dễ hiểu qua bài viết dưới đây nhé.

message.svg zalo.png